Có tồn tại hay không hai số nguyên dương \(x\) và \(y\) sao cho \(x^2+y\) và \(y^2+x\) đều là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử tồn tại các số nguyên dương x,y mà :
(x+y)(x-y)=2022 (1)
Không thể xảy ra trường hợp trong 2 số x và y có 1 số le và 1 số chẵn vì nếu xảy ra thì x+y va x-y đều là số lẻ nên tích (x+y)(x-y) là số lẻ trái với (1)
Vậy x,y phải cùng chẵn hoặc cùng lẻ . Khi đó tích x+y và x-y đều là số chẵn nên tích (x+y)(x-y) chia hết cho 4 mà 2022 lại không chia hết cho 4 suy ra không tồn tại 2 số nguyên dương x và y
Không mất tính tổng quát giả sử x ≥ y
⇒x²<x²+8y≤x²+8x<(x+4)²
VÌ x²+8yx²+8y là số chính phương ⇒x²+8y=(x+1)2x²+8y=(x+1)2
hoặc x²+8y=(x+2)2x²+8y=(x+2)²
hoặc x²+8y=(x+3)²
Nếu x²+8y=(x+1)²
⇒8y=2x+1 (vô lí vì 1 bên lẻ 1 bên chẵn)
Nếu x²+8y=(x+2)² ⇒8y=4x+4 ⇒2y=x+1
⇒[(x+1)2]²+8x ⇒(x+12)²+8x là số chính phương.
⇒x²+34x+1=a² với a∈N
⇒(x+17)²−288=a²
⇒(x+17−a)(x+17+a)=288
Đến đây thì dễ rồi
Nếu x²+8y=(x+3)2 ⇒8y=6x+9x²+8y=(x+3)²
⇒8y=6x+9 (Vô lí vì VT chẵn còn VP thì không)
Giả sử x ≤ y
Ta có: y2 ≤ y2 + 8x ≤ y2 + 8y ≤ y2 + 8y + 16 = (y + 4)2
=> y2 + 8x = (y+1)²
(y+2)²
(y+3)²
Xét TH1 : y2 + 8x = (y + 1)2
=> y2 + 8x = y2 + 2y +1
=> 8x - 2y = 1
=> 4x - y = 1212 => Loại vì x, y ∈ N*
Xét TH2: y2 + 8x = (y + 2)2
=> y2 + 8x = y2 + 4x + 4
=> 8x - 4y = 4
=> 2x - y = 1 mà x;y ∈ N* nên ta có các trường hợp sau:
Nếu x = 1 => y = 1 => x2 + 8y = 9 (TM) ; y2 + 8x = 9 (TM)
Nếu x = 2 => y = 3 => x2 + 8y = 28 (Loại)
Nếu x ≥ 3 => 2x ≥ 6 => y ≤ 5 => Loại vì x≤ y
Xét TH3 : y2 + 8x = ( y +3 )2
=> y2 + 8x = y2 + 6y + 9
=> 8x - 6y = 9
=> 4x - 3y = 4,5 => Loại vì x,y ∈ N*
Vậy (x,y) = (1;1)
cái dới không correct
bạn xem link này nek, mik có trả lời cho 1 bn r đó (nhớ k cho mik nhe)
https://olm.vn/hoi-dap/detail/51014866576.html