Cho A=40+41+42+...........+42016
B=42017 :3
tinh B-A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
$S=1+2+2^2+2^3+...+2^{2017}$
$2S=2+2^2+2^3+2^4+...+2^{2018}$
$\Rightarrow 2S-S=(2+2^2+2^3+2^4+...+2^{2018}) - (1+2+2^2+2^3+...+2^{2017})$
$\Rightarrow S=2^{2018}-1$
b.
$S=3+3^2+3^3+...+3^{2017}$
$3S=3^2+3^3+3^4+...+3^{2018}$
$\Rightarrow 3S-S=(3^2+3^3+3^4+...+3^{2018})-(3+3^2+3^3+...+3^{2017})$
$\Rightarrow 2S=3^{2018}-3$
$\Rightarrow S=\frac{3^{2018}-3}{2}$
Câu c, d bạn làm tương tự a,b.
c. Nhân S với 4. Kết quả: $S=\frac{4^{2018}-4}{3}$
d. Nhân S với 5. Kết quả: $S=\frac{5^{2018}-5}{4}$
a:
Cân nặng | 39 | 40 | 41 | 42 | 43 | 45 |
số lượng | 1 | 4 | 3 | 4 | 1 | 2 |
N=15
c: Cân nặng trung bình là:
\(\dfrac{39\cdot1+40\cdot4+41\cdot3+42\cdot4+43+45\cdot2}{15}\simeq41,5\left(kg\right)\)
a.
Cân nặng (kg) | 39 | 40 | 41 | 42 | 43 | 45 |
Số học sinh | 1 | 4 | 3 | 4 | 1 | 2 |
b. Có 2 bạn cân nặng 45 kilogam.
\(B=\frac{23^{41}+1}{23^{42}+1}\)
Vì B < 1
\(\Rightarrow B=\frac{23^{41}+1}{23^{42}+1}< \frac{23^{41}+1+22}{23^{42}+1+22}=\frac{23^{41}+23}{23^{42}+23}=\frac{23(23^{40}+1)}{23\left(23^{41}+1\right)}=\frac{23^{40}+1}{23^{41}+1}=A\)
P/s: Hoq chắc
ta có
\(B=\frac{23^{41}+1}{23^{42}+1}< \frac{23^{41}+1+22}{23^{42}+1+22}=\frac{23^{41}+23}{23^{42}+23}=\frac{23\left(23^{40}+1\right)}{23\left(23^{41}+1\right)}=\frac{23^{40}+1}{23^{41}+1}=A\)
\(\Rightarrow B< A\)
Cho A=40+41+42+...........+42016
B=42017 :3
Tinh B-A
Giải:Ta có:4A=41+42+43+...............+42017
\(\Rightarrow4A-A=\left(4+4^2+.......+4^{2017}\right)-\left(4^0+4^1+.......+4^{2016}\right)\)
\(\Rightarrow3A=4^{2017}-4^0\Rightarrow A=\frac{4^{2017}-1}{3}=\frac{4^{2017}}{3}-\frac{1}{3}=B-\frac{1}{3}\)
Nên B-A=\(B-\left(B-\frac{1}{3}\right)=\frac{1}{3}\)
A=40+41+42+...+42016=1+4+42+42016
=> 4A=4+42+43+...+42017
=> 4A-A=(4+42+43+...+42017)-(1+4+42+42016)
=> 3A=42017-1 => A=(42017-1):3
=> B-A=42017:3-(42017-1):3
=(42017-42017+1):3=1:3=1/3