K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2017

\(P=\frac{3n+2}{n-1}=\frac{3n-3+5}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=\frac{3\left(n-1\right)}{n-1}+\frac{5}{n-1}=3+\frac{5}{n-1}\)

P nguyên khi \(\frac{5}{n-1}\)nguyên nghĩa là n-1 là ước của 5

Ư(5) = {-5; -1; 1; 5}

n-1-5-115
n-4026

Vậy với x E{-4; 0; 2; 6} thì P nguyên

13 tháng 12 2020

Để \(P=\dfrac{3n+2}{n-1}\) là số nguyên thì:

\(3n+2⋮n-1\)

\(\Rightarrow3\left(n-1\right)+5⋮n-1\)

\(\Rightarrow5⋮n-1\)

=> \(n-1\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)

Ta có các trường hợp sau:

\(\left[{}\begin{matrix}n-1=1\\n-1=-1\\n-1=5\\n-1=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}n=2\\n=0\\n=6\\n=-4\end{matrix}\right.\)

Vậy khi \(n\in\left\{2;0;6;-4\right\}\) thì \(P=\dfrac{3n+2}{n-2}\) là số nguyên.

 

a: \(x\in\left\{1;-1;2;-2\right\}\)

12 tháng 2 2016

so ry em mới hok lớp 5

3 tháng 7 2017

- Nếu n chẵn thì  \(\left(n^2+1\right)3n\)  chẵn, mà  \(6\left(n^2+1\right)\)  chẵn nên A chẵn

- Nếu n lẻ thì  \(\left(n^2+1\right)3n\)  chẵn, mà  \(6\left(n^2+1\right)\)  chẵn nên A chẵn

Do đó  \(\forall n\in N\)    thì A chẵn, mà A là số nguyên tố  => A = 2

Hay \(\left(n^2+1\right)3n-6\left(n^2+1\right)=2\)

\(\Leftrightarrow3n^3+3n-6n^2-6-2=0\)

\(\Leftrightarrow3n^3-6n^2+3n-8=0\)

Mà  \(n\in N\)  nên ko tìm đc giá trị của n để A là số nguyên tố.

2 tháng 7 2017

Đề bài hay nhỉ :3
A là SNT
-> A= 3((n^2+1)n-3(n^2+1)) -> A=3 
-> n^3+n-2n^2-2=1
-> Không n thỏa mãn 
-> Kết luận có A nguyên tố nhưng n không nguyên nên tha cho em bài này :vv

22 tháng 3 2016

ggggggggggggg