K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2017

O B C A K H I J

Gọi bán kính đường tròn là R.

Kẻ đường kính CO cắt đường tròn (O) tại J. Gọi I là chân đường vuông góc hạ từ O đến BC. Theo tính chất đường kính dây cung : I là trung điểm BC.

Do độ lớn BC không đổi nên OI cũng không đổi. Ta tính được \(OI=\sqrt{R^2-\frac{a^2}{4}}\)

Do JC là đường kính nên \(\widehat{JAC}=\widehat{JBC}=90^o\)

Suy ra JA // BH; JB // AH.

Vậy tứ giác JAHB là hình bình hành. Ta có AH = JB.

Xét tam giác JBC có O là trung điểm JC, I là trung điểm BC nên OI là đường trung bình.

Vậy thì JB = 2OI.

Từ đó suy ra AH = 2 OI = \(2\sqrt{R^2-\frac{a^2}{4}}\)  (const)

Vậy thì \(AH.AK=2\sqrt{R^2-\frac{a^2}{4}}.AK\)

AK lớn nhất khi A là điểm chính giữa cung BC.

Khi đó \(AK\equiv AI=3OI=3\sqrt{R^2-\frac{a^2}{4}}\)

Vậy thì maxAH.AK \(=2\sqrt{R^2-\frac{a^2}{4}}.3\sqrt{R^2-\frac{a^2}{4}}=6\left(R^2-\frac{a^2}{4}\right)\)  

Vẽ các đường kính AM, BN, CP của (O). Dễ cm được BMCH, CNAH,APBH là các hình bình hành => AH = CN; BH = CM; CH = BM

=> AH + BH + CH = CN + CM + BM

Vì BC cố định nên CN không đổi => (AH + BH + CH) max khi (CM + BM) max. Ta sẽ cm rằng điều đó xảy ra khi M trùng điểm chính giữa cung nhỏ BC.

Thật vậy gọi Q là điểm chính giữa cung nhỏ BC. Kéo dài BQ đoạn QD = BQ = CQ, kéo dài BM đoạn ME = MC => BD = BQ + CQ = 2BQ và BE = BM + CM

Vì tg CQD cân tại Q => ^BDC = ^QCD = ^BQC/2

Tương tự tg CME cân tại M => ^BEC = ^MCE = ^BMC/2

Mà ^BMC = ^BQC => ^BEC = ^BDC => B,C,D,E cùng thuộc đường tròn đường kính BD => BE =< BD <=> BM + CM =< 2BQ => (BM + CM)

Max = 2BQ xảy ra khi E trùng D hay khi M trùng Q khi đó A là điểm chính giữa cung lớn BC

19 tháng 6 2023

               loading...

a, Xét tam giác vuông EBC vuông tại E và  CI = IB

 ⇒ IE = IC = IB (1) ( vì trong tam giác vuông trung tuyến ứng với cạnh huyền bằng \(\dfrac{1}{2}\) cạnh huyền)

Xét tam giác vuông BCF vuông tại F và IC =IB 

 ⇒IF = IC = IB (2) (vì trong tam giác vuông trung tuyến ứng với cạnh huyền bằng \(\dfrac{1}{2}\) cạnh huyền) 

Từ (1) và (2) ta có: 

IE = IF = IB = IC 

Vậy bốn điểm B, C, E, F cùng thuộc một đường tròn tâm I bán kính bằng \(\dfrac{1}{2}\) BC (đpcm)

b, Xét \(\Delta\)AFC và \(\Delta\)AEB có:

\(\widehat{CAF}\)  chung ; \(\widehat{AFC}\) = \(\widehat{AEB}\) = 900 

⇒ \(\Delta\)AFC  \(\sim\) \(\Delta\)AEB   (g-g)

⇒ \(\dfrac{AF}{AE}\) = \(\dfrac{AC}{AB}\) (theo định nghĩa hai tam giác đồng dạng)

⇒AB.AF = AC.AE (đpcm)

Xét tam giác vuông AEH vuông tại E và KA = KH 

⇒ KE = KH ( vì trong tam giác vuông trung tuyến ứng với cạnh huyền bằng \(\dfrac{1}{2}\) cạnh huyền)

\(\Delta\)EKH cân tại K ⇒ \(\widehat{KEH}\) = \(\widehat{EHK}\) 

\(\widehat{EHK}\) = \(\widehat{DHB}\) (vì hai góc đối đỉnh)

 ⇒ \(\widehat{KEH}\) = \(\widehat{DHB}\) ( tc bắc cầu) (3)

Theo (1) ta có: IE = IB ⇒ \(\Delta\) IEB cân tại I 

⇒ \(\widehat{IEB}\) = \(\widehat{IBE}\)  (4)

Cộng vế với vế của (3) và(4)

Ta có: \(\widehat{KEI}\) = \(\widehat{KEH}\) + \(\widehat{IEB}\) =  \(\widehat{DHB}\) + \(\widehat{IBE}\)  = \(\widehat{DHB}\) + \(\widehat{DBH}\)

        Vì tam giác DHB vuông tại D nên \(\widehat{DHB}\) + \(\widehat{DBH}\)  = 1800 - 900 = 900

 ⇒\(\widehat{KEI}\)  = 900

         IE \(\perp\) KE (đpcm)

 

 

 

 

 

 

 

a: Kẻ BD vuông góc AC,CE vuông góc AB

góc BEC=góc BDC=90 độ

=>BEDC nội tiếp

=>góc AED=góc ACB

=>ΔAED đồng dạng vơi ΔACB

Tâm M của đường tròn ngoại tiếp tứ giác BDCE là trung điểm của BC

Gọi H là giao của BD và CE

=>AH vuông góc BC tại N

Gọi giao của OM với (O) là A'

ΔOBC cân tại O

=>OM vuông góc BC

AN<=A'M ko đổi

=>\(S_{ABC}=\dfrac{1}{2}\cdot AN\cdot BC< =\dfrac{1}{2}\cdot A'M\cdot BC_{kođổi}\)

Dấu = xảy ra khi A trùng A'

=>A là điểm chính giữa của cung BC