K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2023

Các bạn vẽ hình hộ mik nha

29 tháng 12 2023

a: Xét tứ giác AFCD có

AF//CD

DA//CF

Do đó: AFCD là hình bình hành

b,c: Điểm P ở đâu vậy bạn?

22 tháng 10 2023

a: Xét tứ giác ADHE có

AD//HE

AE//HD

Do đó: ADHE là hình bình hành

b: AE=HD(ADHE là hình bình hành)
DM=DH

Do đó: AE=DM

Xét tứ giác AEDM có

AE//DM

AE=DM

Do đó: AEDM là hình bình hành

c: Đề sai rồi bạn

a) Xét tứ giác ADME có 

ME//AD(gt)

MD//AE(gt)

Do đó: ADME là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Hình bình hành ADME có \(\widehat{EAD}=90^0\)(\(\widehat{BAC}=90^0,E\in AC,D\in AB\))

nên ADME là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

b) Ta có: ADME là hình chữ nhật(cmt)

nên ED=AM(Hai đường chéo trong hình chữ nhật ADME)

mà ED=5cm(gt)

nên AM=5cm

Ta có: ΔABC vuông tại A(gt)

mà AM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)

nên \(AM=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

\(\Leftrightarrow BC=2\cdot AM=2\cdot5=10\left(cm\right)\)

Xét ΔABC có AH là đường cao ứng với cạnh BC(gt)

nên \(S_{ABC}=\dfrac{AH\cdot BC}{2}=\dfrac{4.8\cdot10}{2}=24\left(cm^2\right)\)

c) Xét ΔABC có 

M là trung điểm của BC(gt)

ME//AB(gt)

Do đó: E là trung điểm của AC(Định lí 1 về đường trung bình của tam giác)

Xét ΔABC có 

M là trung điểm của BC(gt)

MD//AC(gt)

Do đó: D là trung điểm của AB(Định lí 1 về đường trung bình của tam giác)

Ta có: ΔAHB vuông tại H(AH⊥BC tại H)

mà HD là đường trung tuyến ứng với cạnh huyền AB(D là trung điểm của AB)

nên \(HD=\dfrac{AB}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

mà \(AD=\dfrac{AB}{2}\)(D là trung điểm của AB)

nên HD=AD

Ta có: ΔAHC vuông tại H(AH⊥BC tại H)

mà HE là đường trung tuyến ứng với cạnh huyền AC(E là trung điểm của AC)

nên \(HE=\dfrac{AC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

mà \(AE=\dfrac{AC}{2}\)(E là trung điểm của AC)

nên HE=AE

Xét ΔEAD và ΔEHD có 

EA=EH(cmt)

ED chung

AD=HD(cmt)

Do đó: ΔEAD=ΔEHD(c-c-c)

\(\widehat{EAD}=\widehat{EHD}\)(hai góc tương ứng)

mà \(\widehat{EAD}=90^0\)(\(\widehat{BAC}=90^0\), D∈AB, E∈AC)

nên \(\widehat{EHD}=90^0\)

hay HD⊥HE(đpcm)

a: MD//AC

=>góc MDB=góc ACB

=>góc MDB=60 độ

Xét tứ giác BEMD có

EM//BD

góc B=góc MDB

=>BEMD là hình thang cân

ME//BC

=>góc AEM=góc ABD=60 độ

Xét tứ giác AEMF có

MF//AE
góc A=góc MEA

=>AEMF là hình thang cân

MF//AE

=>góc CFM=góc CAB=60 độ

Xét tứ giác DCFM có

DM//FC

góc DCF=góc MFC

=>DCFM là hình thang cân

b: Sửa đề: Độ dài 3 cạnh MA,MB,MC bằng độ dài 3 cạnh của tam giác nào

AEMF là hình thang cân

=>AM=EF

BEMD là hình thang cân

=>BM=ED

FMDC là hình thang cân

=>MC=FD

=>Độ dài 3 cạnh MA,MB,MC bằng độ dài 3 cạnh của ΔEFD