cho a/b=c/d cminh 7a-4b=3a+5b=7c-4d/3c+5d
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt \(\frac{a}{b}\)= \(\frac{c}{d}=k\Rightarrow\hept{\begin{cases}k=ab\\k=cd\end{cases}}\)
ta có : \(\frac{7a-4b}{3a+5b}\)= \(\frac{7ak-4b}{3ak-5b}=\frac{a\left(7k-4\right)}{a\left(3k-5\right)}=\frac{7k-4}{3k-5}\left(1\right)\)
\(\frac{7c-4d}{3c+5d}\)=\(\frac{7ck-4d}{3ck+5d}\)= \(\frac{c\left(7k-4\right)}{c\left(3k+5\right)}\)= \(\frac{7k-4}{3k+5}\)( 2 )
từ (1) và ( 2) => \(\frac{7a-4b}{3a+5b}=\frac{7c-4d}{3c+5d}\)( điều phải chứng minh )
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Ta có: \(\frac{7a-4b}{3a+5b}=\frac{7bk-4b}{3bk-5b}=\frac{b\left(7k-4\right)}{b\left(3k-5\right)}=\frac{7k-4}{3k-5}\)(1)
\(\frac{7c-4d}{3c+5d}=\frac{7dk-4d}{3dk+5d}=\frac{d\left(7k-4\right)}{d\left(3k+5\right)}=\frac{7k-4}{3k+5}\)(2)
Từ (1) và (2) suy ra \(\frac{7a-4b}{3a+5b}=\frac{7c-4d}{3c+5d}\)(đpcm)
Đặt a/b=c/d=k
=>a=bk; c=dk
a: \(\dfrac{7a-4b}{3a+5b}=\dfrac{7bk-4b}{3bk+5b}=\dfrac{7k-4}{3k+5}\)
\(\dfrac{7c-4d}{3c+5d}=\dfrac{7dk-4d}{3dk+5d}=\dfrac{7k-4}{3k+5}\)
Do đó: \(\dfrac{7a-4b}{3a+5b}=\dfrac{7c-4d}{3c+5d}\)
b: \(\dfrac{ac}{bd}=\dfrac{bk\cdot dk}{bd}=k^2\)
\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}=k^2\)
Do đó: \(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)
vì a/b=c/d =>a/c=b/d
áp dụng tính chất của dãy tỉ số bằng nhau ta có :
a/c=b/d=a+b/c+d=a-b/c-d
vi a+b/c+d=a-b/c-d
=>a-b/a+b=c-d/c+d(dpcm)
- vì a/b=c/d=>a/c=b/d=>7a/7c=4b/4d
vì a/c=c/d=>3a/3c=5b/5d
áp dụng tính chất của dãy tỉ số bằng nhau ta có
a/c=b/d=7a-4b/7c-4d=3a+5b/3c+5d
vì 7a-4b/7c-4d=3a+5b/3c+5d
=>7a-4b/3a+5b=7c-4d/3c+5d(dpcm)
- vì a/b=c/d=>a/c=b/d=>a2/c2=b2/d2=ab/cd(1)
áp dụng tính chất của dãy tỉ số bằng nhau ta có
a2/c2=b2/d2=a2+b2/c2+d2 (2)
a/c=b/d=c-a/d-b=>a2/c2=b2/d2=(c-a)2/(d-b)2 (3)
từ(1),(2) và (3)=>ac/bd=a2+c2/b2+d2=(c-a)2/(d-b)2
Xem ở Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
Giải:
Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{2a}{2c}=\frac{5b}{5d}=\frac{2a+5b}{2c+5d}\)
\(\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{4b}{4d}=\frac{3a-4b}{3c-4d}\)
\(\Rightarrow\frac{2a+5b}{2c+5d}=\frac{3a-4b}{3c-4d}\left(=\frac{a}{c}\right)\)
\(\Rightarrow\frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\left(đpcm\right)\)
Vậy...
Gọi a/b=c/d=k nên a=bk;c=dk
=>2a+5b/3a-4b=2bk+5b/3bk-4b=b(2k+5)/b(3k-4)=2k+5/3k-4(1)
=>2c+5d/3c-4d=2dk+5d/3dk-4d=d(2k+5)/d(3k-4)=2k+5/3k-4(2)
Từ (1);(2) =>2a+5b/3a-4b=2c+5d/3c-4d
Ta đặt:\(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
Khi đó: \(\frac{2a+5b}{3a-4b}=\frac{2bk+5b}{3bk-4b}=\frac{b\left(2k+5\right)}{b\left(3k-4\right)}=\frac{2k+5}{3k-4}\)
\(\frac{2c+5d}{3c-4d}=\frac{2dk+5d}{3dk-4d}=\frac{d\left(2k+5\right)}{d\left(3k-4\right)}=\frac{2k+5}{3k-4}\)
\(\Rightarrow\frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\left(=\frac{2k+5}{3k-4}\right)\)