K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2017

\(\Delta ABC=\Delta DEF\)

\(\Rightarrow\hept{\begin{cases}AB=DE\text{ ( 2 cạnh tương ứng )}\\BC=EF\text{ ( 2 cạnh tương ứng )}\\AC=DF\text{ ( 2 cạnh tương ứng )}\end{cases}}\)

\(\Rightarrow\)AB = DE = 5cm ; BC = EF = 7cm ; AC = DF = 6cm

\(\Rightarrow\)chu vi \(\Delta ABC\)là : 5 + 7 + 6 = 18 ( cm )

chu vi \(\Delta DEF\)là : 5 + 7 + 6 = 18 ( cm )

19 tháng 12 2017

Vì tam giác ABC = tam giác DEF

=> AB = DE; BC = EF; AC = DF

Chu vi tam giác ABC là:  5 + 6 + 7 = 18 (cm) = chu vi tam giác DEF

Vậy chu vi tam giác ABC là 18 cm

        chu vi tam giác DEF là 18 cm

20 tháng 4 2017

\(\Delta ABC=\Delta DEF\)

nên AB = DE = 4cm;

BC = EF = 6cm;

AC = DF = 5cm

Khi đó: \(P_{\Delta ABC}=P_{\Delta DEF}=4+5+6=15\left(cm\right)\)

Vậy \(P_{\Delta ABC}=P_{\Delta DEF}=15cm.\)

20 tháng 4 2017

Ta có \(\Delta\)ABC= \(\Delta\)DEF

Suy ra: AB=DE=4cm, BC=EF=6cm, DF=AC=5cm.

Chu vi của tam giác ABC bằng: AB+BC+AC= 4+5+6=15 (cm)

Chu vi của tam giác DEF bằng: DE+EF+DF= 4+5+6=15 (cm )



TL
26 tháng 3 2020

Hình vẽ

Giải bài 13 trang 112 Toán 7 Tập 1 | Giải bài tập Toán 7

Vì ΔABC = ΔDEF nên suy ra:

AB = DE = 4cm

BC = EF = 6cm

DF = AC = 5cm

Chu vi tam giác ABC bằng:

AB + BC + CA = 4 + 6 + 5 = 15 (cm)

Chu vi tam giác DEF bằng:

DE + EF + DF = 4 + 6 + 5 = 15 (cm)

Vậy...

Chúc bạn học tốt!

5 tháng 3 2018

Bài 2 :

A B D C M K F

a) Xét \(\Delta ABM,\Delta ADM\) có :

\(AB=AD\left(gt\right)\)

\(AM:chung\)

\(BM=DM\) (M là trung điểm của BD)

=> \(\Delta ABM=\Delta ADM\left(c.c.c\right)\)

b) Từ \(\Delta ABM=\Delta ADM\) (cmt - câu a) suy ra :

\(\widehat{AMB}=\widehat{AMD}\) (2 góc tương ứng)

Mà : \(\widehat{AMB}+\widehat{AMD}=180^o\left(Kềbù\right)\)

=> \(\widehat{AMB}=\widehat{AMD}=\dfrac{180^o}{2}=90^o\)

=> \(AM\perp BD\rightarrowđpcm\)

c) Xét \(\Delta ABK,\Delta ADK\) có :

AB = AD (gt)

\(\widehat{BAK}=\widehat{DAK}\) (\(\Delta ABM=\Delta ADM\))

AK :Chung

=> \(\Delta ABK=\Delta ADK\left(c.g.c\right)\)

d) Ta có : \(\left\{{}\begin{matrix}\widehat{ABK}+\widehat{FBK}=180^{^O}\\\widehat{ADK}+\widehat{CDK}=180^{^O}\end{matrix}\right.\left(Kềbù\right)\)

Lại có : \(\widehat{ABK}=\widehat{ADK}\) (do \(\Delta ABK=\Delta ADK\left(c.g.c\right)\)

Nên : \(180^o-\widehat{ABK}=180^o-\widehat{ADK}\)

\(\Leftrightarrow\widehat{FBK}=\widehat{CDK}\)

Xét \(\Delta BFK,\Delta DCK\) có :

\(BF=CD\left(gt\right)\)

\(\widehat{FBK}=\widehat{CDK}\left(cmt\right)\)

\(BK=DK\) (\(\Delta ABK=\Delta ADK\left(c.g.c\right)\))

=> \(\Delta BFK=\Delta DCK\left(c.g.c\right)\)

=> FK = DK (2 cạnh tương ứng)

=> K là trung điểm của FD

=> F, D, K thẳng hàng.

7 tháng 7 2017

\(DE=5cm;DH=6cm;EH=8cm\)

5 tháng 11 2017

Vì tam giác ABC = tam giác DEH

=> AB=De

19 tháng 12 2021
  

Xét ΔABC=ΔDEFcó:

AB=DE=5cm

BC=EF=7cm

DF=AC=6cm

- Chu vi của tam giác ABC là:

AB+BC+AC=5+7+6=18(cm)

- Chu vi của tam giác DEF là:

DE+EF+DE=5+7+6=18(cm)

Vậy +)Chu vi của tam giác ABC là 18 cm

+) Chu vi của tam giác DEF là 18 cm

28 tháng 11 2021

a) Các cạnh còn lại của mỗi tam giác:

-Tam giác ABC: cạnh AC=6cm

-Tam giác DEF:cạnh DE=7cm,cạnh EF=5cm

b)Chu vi của mỗi tam giác đều bằng:18cm

28 tháng 11 2021

 

a)Δ A B C = Δ D E F c ó :

A B = D E = 5 c m

B C = E F = 7 c m

D F = A C = 6 c m

b)- Chu vi của tam giác A B C là:

A B + B C + A C = 5 + 7 + 6 = 18 ( c m )

- Chu vi của tam giác D E F là:

D E + E F + D E = 5 + 7 + 6 = 18 ( c m )

TAM GIÁC ĐỒNG DẠNG 1, a) Cho AB=6 dm, AC=15 cm , tìm tỉ số hai đoạn thẳng AB và AC . b) Cho AB=6 cm, AC=18 cm , tìm tỉ số hai đoạn thẳng AB và AC . 2, ΔMNP _____ ΔABC thì : a) \(\frac{MN}{AB}=\)........ b) \(\frac{MP}{AC}=........\) 3, Tìm tam giác đồng dạng có độ dài ba cạnh dưới đây: A. 4 cm; 5 cm; 6 cm và 4 cm; 5 cm; 7 cm. B. 2 cm; 3 cm; 4 cm và...
Đọc tiếp

TAM GIÁC ĐỒNG DẠNG

1, a) Cho AB=6 dm, AC=15 cm , tìm tỉ số hai đoạn thẳng AB và AC .

b) Cho AB=6 cm, AC=18 cm , tìm tỉ số hai đoạn thẳng AB và AC .

2, ΔMNP _____ ΔABC thì : a) \(\frac{MN}{AB}=\)........ b) \(\frac{MP}{AC}=........\)

3, Tìm tam giác đồng dạng có độ dài ba cạnh dưới đây:

A. 4 cm; 5 cm; 6 cm và 4 cm; 5 cm; 7 cm. B. 2 cm; 3 cm; 4 cm và 2 cm ; 5cm ; 4 cm.

C. 6 cm; 5 cm; 7 cm và 6 cm; 5 cm; 8 cm. D. 3 cm; 4 cm; 5cm và 6 cm;8 cm; 10 cm.

4, a) Cho ΔABC có AB=3 cm, AC= 6 cm. Đường phân giác trong của ❏BAC cắt cạnh BC tại E. Biết BD= 2cm. Tính độ dài đoạn thẳng EC ❓

b) Cho \(\Delta ABC\) có AB = 6 cm, AC= 8 cm. Đường phân giác trong của ❏BAC cắt cạnh BC tại D. Biết CD= 4 cm. Tính độ dài đoạn thẳng DB ❓

5. a) Cho \(\Delta DEF\sim\Delta ABC\) theo tỉ số đồng dạng k = 2. Tìm tỉ số \(\frac{S_{DÈF}}{S_{ABC}}\)

b) Cho \(\Delta DEF\)\(\sim\Delta ABC\) theo tỉ số đồng dạng k=\(\frac{1}{2}\). Tìm tỉ số \(\frac{S_{DEF}}{S_{ABC}}\)

6. Cho \(\Delta ABC.\)Lấy 2 điểm D và E lần lượt nằm trên cạnh AB và AC sao cho \(\frac{AD}{AB}=\frac{AE}{AC}.\)Kết luận nào sai

A. \(\Delta ADE\sim\Delta ABC\) B. DE//BC C. \(\frac{AE}{AD}=\frac{AC}{AB}\) D. \(\Delta ADE=\Delta ABC\)

7, Nếu hai tam giác ABC và DEF có góc A= góc D, góc C= góc E thì:

A.\(\Delta ABC\sim\Delta DEF\) B. \(\Delta ABC\sim\Delta EDF\)

C. \(\Delta ABC\sim\Delta DFE\) D.\(\Delta ABC\sim\Delta FED\)

giải giúp mình với! Mình cần gấp

1

TAM GIÁC ĐỒNG DẠNG

1, a) Tỉ số hai đoạn thẳng AB và AC : \(\frac{AB}{AC}=\frac{6}{15}\)

b) Tỉ số hai đoạn thẳng AB và AC . : \(\frac{AB}{AC}=\frac{6}{18}=\frac{1}{3}\)

2, ΔMNP ~ ΔABC thì : \(\frac{MN}{AB}=\frac{NP}{BC}=\frac{MP}{AC}\)

3, Tìm tam giác đồng dạng có độ dài ba cạnh dưới đây:

A. 4 cm; 5 cm; 6 cm và 4 cm; 5 cm; 7 cm. B. 2 cm; 3 cm; 4 cm và 2 cm ; 5cm ; 4 cm.

C. 6 cm; 5 cm; 7 cm và 6 cm; 5 cm; 8 cm. D. 3 cm; 4 cm; 5cm và 6 cm;8 cm; 10 cm.

4, a) Cho ΔABC có AB=3 cm, AC= 6 cm. Đường phân giác trong của ❏BAC cắt cạnh BC tại E. Biết BD= 2cm. Tính độ dài đoạn thẳng EC ❓

Bạn ơi D ở đâu vậy ?

b) Cho ΔABCΔABC có AB = 6 cm, AC= 8 cm. Đường phân giác trong của ❏BAC cắt cạnh BC tại D. Biết CD= 4 cm. Tính độ dài đoạn thẳng DB ❓

Xét \(\Delta ABC\) có AD là phân giác

\(\Rightarrow\frac{AB}{BD}=\frac{AC}{CD}\Rightarrow BD=\frac{AB.CD}{AC}=3cm\)

5. a) Cho ΔDEF∼ΔABC theo tỉ số đồng dạng k = 2. Tìm tỉ số SDÈFvà SABC

\(\frac{S_{\Delta DEF}}{S_{\Delta ABC}}=k^2=2^2=4\)

b) Cho ΔDEF∼ΔABC theo tỉ số đồng dạng k=\(\frac{1}{2}\). Tìm tỉ số SDEF và SABC

\(\frac{S_{\Delta DEF}}{S_{\Delta ABC}}=k^2=\left(\frac{1}{2}\right)^2=\frac{1}{4}\)

6. Cho ΔABC..Lấy 2 điểm D và E lần lượt nằm trên cạnh AB và AC sao cho AD/AB=AE/AC Kết luận nào sai

A. ΔADE∼ΔABC B. DE//BC

C. AE/AD=AC/AB D. ΔADE=ΔABC

7, Nếu hai tam giác ABC và DEF có góc A= góc D, góc C= góc E thì:

A.ΔABC∼ΔDEF B. ΔABC∼ΔEDF

C. ΔABC∼ΔDFE D.ΔABC∼ΔFED

14 tháng 5 2019

cảm ơn bạn nhiều nha