Tìm maxB biết B=2-x+\(\sqrt[]{X}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(B=\left(\frac{1}{\sqrt{x}+2}+\frac{7}{x-4}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}-2}-1\right)\)
=> \(B=\left(\frac{1}{\sqrt{x}+2}+\frac{7}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\left(\frac{\sqrt{x}-1-\sqrt{x}+2}{\sqrt{x}-2}\right)\)
=> \(B=\frac{\sqrt{x}+5}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}:\frac{1}{\sqrt{x}-2}\)
=> \(B=\frac{\sqrt{x}+5}{\sqrt{x}+2}\)
b/ B>2 <=> \(\frac{\sqrt{x}+5}{\sqrt{x}+2}>2\) <=> \(\sqrt{x}+5>2\sqrt{x}+4\)
<=> \(1>\sqrt{x}\)=> \(-1\le x\le1\)
c/ \(B=\frac{\sqrt{x}+5}{\sqrt{x}+2}=\frac{\sqrt{x}+2+3}{\sqrt{x}+2}=1+\frac{3}{\sqrt{x}+2}\)
Để Bmax thì \(\sqrt{x}+2\) đạt giá trị nhỏ nhất . Do \(\sqrt{x}+2\ge2\)=> Đạt nhỏ nhất khi x=0
Khí đó giá trị lớn nhất của B là: \(1+\frac{3}{2}=\frac{5}{2}\)Đạt được khi x=0
\(B\le\frac{x^2+25-x^2}{2}=\frac{25}{2}\)
\(\Rightarrow B_{max}=\frac{25}{2}\) khi \(\left|x\right|=\sqrt{25-x^2}\Leftrightarrow x=\pm\frac{5\sqrt{2}}{2}\)
Bài này dùng pp miền giá trị cx đc nè:
\(B=\frac{2\sqrt{x}-1}{x+2\sqrt{x}+1}\)
\(\Leftrightarrow Bx+2B\sqrt{x}+B=2\sqrt{x}-1\)
\(\Leftrightarrow Bx+2\sqrt{x}\left(B-1\right)+B+1=0\) (1)
Để pt(1) có nghiệm thì \(\Delta'\ge0\)
\(\Leftrightarrow\left(B-1\right)^2-B\left(B+1\right)\ge0\)
\(\Leftrightarrow-3B+1\ge0\Leftrightarrow B\le\frac{1}{3}\)
+) \(B=\frac{1}{3}\Rightarrow x=4\left(tm\right)\)
Vậy \(MaxB=\frac{1}{3}\Leftrightarrow x=4\)
Bài này chỉ tìm được Min thôi nhé:)
Ta có: \(B=4x^2-3x^3=x^2\left(4-3x\right)\)
Vì \(0\le x< \frac{4}{3}\Rightarrow4-3x>0\)
\(\Rightarrow B\ge0\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(x^2=0\Rightarrow x=0\)
Vậy \(B_{Min}=0\Leftrightarrow x=0\)
Bài này mình tìm đc MAX bạn r bạn nhé
TH1: x=0 thì B=0 (1)
TH2; \(0< x< \frac{4}{3}\)
Suy ra: 4-3x >0
Ta có \(B=4x^2-3x^3 \)
<=> \(x.B=x.x.x.\left(4-3x\right)\) (do 0<x<4/3)
ÁP DỤNG BĐT CAUCHY cho các số dương ta đc
\(x.B=x.x.x.\left(4-3x\right)\le\left(\frac{x+x+x+4-3x}{4}\right)^4=1\)
Suy ra \(B\le\frac{1}{x}\) (do 0<x<4/3) (2)
Lại có \(\frac{1}{x}>0\) vói mọi 0<x<4/3 (3)
Nên từ (1), (2), (3) suy ra
\(MaxB=\frac{1}{x}\Leftrightarrow\hept{\begin{cases}x=x=x=4-3x\\0< x< \frac{4}{3}\end{cases}
\Leftrightarrow\hept{\begin{cases}x=1\left(TMĐK\right)\\0< x< \frac{4}{3}\end{cases}}}\)
Khi đó Max B= 1