. Tìm giá trị của y nhỏ nhất
234,9 . y < 469,8
Giải tri tiết nhé
k cho nếu giải được
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Lưu ý: Đề không cho tìm max – min trên đoạn nên ta không thể so sánh các giá trị như vậy
Cách giải: Lập BBT và ở đây kết luận được giá trị nhỏ nhất của hàm số là 1 , nhưng hàm số không có giá trị lớn nhất.
Đáp án C
Lời giải trên là sai. Cách làm lời giải này chỉ đúng đối với bài toán tìm giá trị lớn nhất – giá trị nhỏ nhất của hàm số trên một đoạn .
Để giải bài toán này, ta lập bảng biến thiên của hàm số y = 2 x 4 − 4 x 2 + 3 trên R
* Bước 1: Tập xác định D = ℝ . Đạo hàm y ' = 8 x 3 − 8 x .
* Bước 2: Cho y ' = 0 tìm x = 0 ; x = − 1 ; x = 1 .
* Bước 3: Ta có bảng biến thiên sau:
Quan sát bảng biến thiên, ta thấy giá trị nhỏ nhất của hàm số là 1 và hàm số không có giá trị lớn nhất. Vậy lời giải trên sai từ bước 3.
Ta có: (x + 2)4 \(\ge\)0 với mọi x
|2y - 10| \(\ge\)0 với mọi y
=> (x + 2)4 + |2y - 10| \(\ge\)0
=> S = (x + 2)4 + |2y - 10| + 2017 \(\ge\)2017
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x+2\right)^4=0\\\left|2y-10\right|=0\end{cases}}\)<=>\(\hept{\begin{cases}x=-2\\y=5\end{cases}}\)
Vậy GTNN của S = 2017 tại x = -2 và y = 5
Ta có: \(x^2-2x+y^2-4y+7\)
\(=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+2\)
\(=\left(x-1\right)^2+\left(y-2\right)^2+2\)
Vì:\(\left(x-1\right)^2+\left(y-2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-1\right)^2+\left(y-2\right)^2+2\ge2\forall x\)
Dấu = xảy ra khi: \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)
Vậy:GTNN của bt là 2 tại x=1,y=2
\(\left|x-1\right|+\left|y+1\right|+2019\)
Ta có : \(\left|x-1\right|\ge0\forall x\)
\(\left|y+1\right|\ge0\forall y\)
=> \(\left|x-1\right|+\left|y+1\right|+2019\ge2019\forall x,y\)
Dấu = xảy ra <=> | x - 1 | = 0 và | y + 1 | = 0
<=> x - 1 = 0 và y + 1 = 0
<=> x = 1 và y = -1
Vậy GTNN của biểu thức = 2019 khi x = 1 và y = -1
Ta có : 469,8 : 234,9 = 2
=> y = 0 ; 1
mà y nhỏ nhất => y = 0
Vậy y=0
đúng rồi đó bạn