cho a>b>0 va 3a2+3b2=10ab
tinh gia tri cua bt
p= \(\frac{b-a}{b+a}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có a-4ab=b. suy ra: \(a=b+4ab\)
Suy ra: \(P=\frac{b+4ab+b}{b+4ab-b}=\frac{2b+4ab}{4ab}=1+\frac{1}{2a}\)
2a^2 + 2b^2 -5ab=0 <=>(2a^2 - 4ab) - (ab - 2b^2) = 0 <=> 2a(a- 2b) - b(2a-b) =0
<=> (a-2b)(2a-b)=0 <=>hoặc a=2b hoăc b=2a
Sau đó thay vào tính được P={1/4 ; 1}
a)
xét f(x)=0
=>3x-6=0
=> 3x=6
=> x=2
vậy nghiệm của f(x) là 2
xét g(t)=0
=> -4t-8=0
=> -4t=8
=> t=-2
vậy nghiệm của g(t) là -2
b)
f(x)=1=> 3x-6=1
=> 3x=7
=> x=7/3
g(t)=1=> -4t-8=1
=> -4t=9
=> t=-9/4
a)
xét f(x)=0
=>3x-6=0
=> 3x=6
=> x=2
vậy nghiệm của f(x) là 2
xét g(t)=0
=> -4t-8=0
=> -4t=8
=> t=-2
vậy nghiệm của g(t) là -2
b)
f(x)=1=> 3x-6=1
=> 3x=7
=> x=7/3
g(t)=1=> -4t-8=1
=> -4t=9
=> t=-9/4
Ta có: |a|=b2005
Vì |a| > 0 => b2005 Mà 2005 là số lẻ=> b mang dấu dương(vì sẽ không có 2 trường hợp b âm hoặc dương như mũ chẵn)
Mặt khác: a,b khác dấu=> a mang dấu âm
Lời giải:
$3a^2+3b^2=10ab$
$\Leftrightarrow 3a^2+3b^2-10ab=0$
$\Leftrightarrow (3a-b)(a-3b)=0$
$\Leftrightarrow b=3a$ hoặc $a=3b$.
Nếu $b=3a$ thì:
$P=\frac{3a-a}{3a+a}=\frac{2a}{4a}=\frac{1}{2}$
Nếu $a=3b$ thì:
$P=\frac{b-3b}{b+3b}=\frac{-2b}{4b}=\frac{-1}{2}$