Tìm x:
10+1/8x=15+1/64x=20+1/512x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(x\) + 99: 3 = 55
\(x\) + 33 = 55
\(x\) = 55 - 33
\(x\) = 22
b, (\(x\) - 25):15 = 20
\(x\) - 25 = 20 x 15
\(x\) - 25 = 300
\(x\) = 300 + 25
\(x\) = 325
c, (3\(x\) - 15).7 = 42
3\(x\) - 15 = 42:7
3\(x\) - 15 = 6
3\(x\) = 6 + 15
3\(x\) = 21
\(x\) = 21: 3
\(x\) = 7
1: Ta có: \(x^{10}-4x^8+4x^6\)
\(=x^6\left(x^4-4x^2+4\right)\)
\(=x^6\left(x-2\right)^2\left(x+2\right)^2\)
2: Ta có: \(m^3+27\)
\(=\left(m+3\right)\left(m^2-3m+9\right)\)
3: Ta có: \(x^3+8\)
\(=\left(x+2\right)\left(x^2-2x+4\right)\)
4: Ta có: \(\frac{1}{27}+a^3\)
\(=\left(\frac{1}{3}+a\right)\left(\frac{1}{9}-\frac{a}{3}+a^2\right)\)
5: Ta có: \(8x^3+27y^3\)
\(=\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)\)
6: Ta có: \(\frac{1}{8}x^3+8y^3\)
\(=\left(\frac{1}{2}x+2y\right)\left(\frac{1}{4}x^2-xy+4y^2\right)\)
7: Ta có: \(8x^6-27y^3\)
\(=\left(2x^2-3y\right)\left(4x^4+6x^2y+9y^2\right)\)
8: Ta có: \(\frac{1}{8}x^3-8\)
\(=\left(\frac{1}{2}x-2\right)\left(\frac{1}{4}x^2+x+4\right)\)
9: Ta có: \(\frac{1}{64}x^6-125y^3\)
\(=\left(\frac{1}{4}x^2-5y\right)\left(\frac{1}{16}x^4+\frac{5}{4}x^2y+25y^2\right)\)
10: Ta có: \(\left(a+b\right)^3-c^3\)
\(=\left(a+b-c\right)\left[\left(a+b\right)^2+\left(a+b\right)\cdot c+c^2\right]\)
\(=\left(a+b-c\right)\left(a^2+2ab+b^2+ac+bc+c^2\right)\)
11: Ta có: \(x^3-\left(y-1\right)^3\)
\(=\left[x-\left(y-1\right)\right]\cdot\left[x^2+x\left(y-1\right)+\left(y-1\right)^2\right]\)
\(=\left(x-y+1\right)\left(x^2+xy-x+y^2-2y+1\right)\)
12: Ta có: \(x^6+1\)
\(=\left(x^2+1\right)\left(x^4-x^2+1\right)\)
1) \(x^{10}-4x^8+4x^6\)
\(=x^6\left(x^4-4x^2+4\right)\)
2) \(m^3+27=m^3+3^3=\left(m+3\right)\left(m^2-3m+3^2\right)\)
3) \(x^3+8=x^3+2^3=\left(x+2\right)\left(x^2-2x+2^2\right)\)
4) \(\frac{1}{27}+a^3=\left(\frac{1}{3}\right)^3+a^3=\left(\frac{1}{3}+a\right)\left[\left(\frac{1}{3}\right)^2-\frac{1}{3}a+a^2\right]\)
5) \(8x^3+27y^3=\left(2x\right)^3+\left(3y\right)^3=\left(2x+3y\right)\left[\left(2x\right)^2-2x.3y+\left(3y\right)^2\right]=\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)\)
6) \(\frac{1}{8}x^3+8y^3=\left(\frac{1}{2}x\right)^3+\left(2y\right)^3=\left(\frac{1}{2}x+2y\right)\left[\left(\frac{1}{2}x\right)^2-\frac{1}{2}x.2y+\left(2y\right)^2\right]=\left(\frac{1}{2}x+2y\right)\left(\frac{1}{4}x^2-xy+4y^2\right)\)
8) \(\frac{1}{8}x^3-8=\left(\frac{1}{2}x\right)^3-2^3=\left(\frac{1}{2}x-2\right)\left[\left(\frac{1}{2}x\right)^2+\frac{1}{2}x.2+2^2\right]=\left(\frac{1}{2}x-2\right)\left(\frac{1}{4}x^2+x+4\right)\)
10) \(\left(a+b\right)^3-c^3=\left(a+b-c\right)\left[\left(a+b\right)^2+\left(a+b\right)c+c^2\right]=\left(a+b-c\right)\left[\left(a^2+2ab+b^2\right)+ac+bc+c^2\right]=\left(a+b-c\right)\left(a^2+2ab+b^2+ac+bc+c^2\right)\)11) \(x^3-\left(y-1\right)^3=\left(x-y+1\right)\left[x^2+x\left(y-1\right)+\left(y-1\right)^2\right]=\left(x-y+1\right)\left[x^2+xy-x+\left(y^2-2y+1\right)\right]=\left(x-y+1\right)\left(x^2+xy-x+y^2-2y+1\right)\)
P/s: Đăng ít thôi chớ bạn!
1) 14x-8x=10+5
x(14-8)=15
x6=15
x=15/6
2)5x-3x=30-15
2x=15
x=15/2
3)làm tương tự
11: Ta có: \(\left(x+3\right)^3=125\)
\(\Leftrightarrow x+3=5\)
hay x=2
12: Ta có: \(\left(2x\right)^4=16\)
\(\Leftrightarrow x^4=1\)
hay \(x\in\left\{1;-1\right\}\)
1)ĐK:`4x^2-12x+9>0`
`<=>(2n-3)^2>0`
`<=>2n-3 ne 0`
`<=>n ne 3/2`
`d)x^2-x+1`
`=(x-1/2)^2+3/4>0AAx`
`=>` bt xd `AAx in RR`
e)ĐK:`x^2-8x+15>0`
`<=>x^2-3x-5x+15>0`
`<=>x(x-3)-5(x-3)>0`
`<=>(x-3)(x-5)>0`
`TH1:` \(\begin{cases}x-3>0\\x-5>0\\\end{cases}\)
`<=>` \(\begin{cases}x>3\\x>5\\\end{cases}\)
`<=>x>5`
`TH2:` \(\begin{cases}x-3<0\\x-5<0\\\end{cases}\)
`<=>` \(\begin{cases}x<3\\x<5\\\end{cases}\)
`<=>x<3`
f)ĐK:`3x^2-7x+20>0`
`<=>x^2-2x+1+2x^2-5x+19>0`
`<=>(x-1)^2+2(x-5/2)^2+13/2>0` luôn đúng