K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2017

Gọi ƯCLN chung lớn nhất của 2n+1 và 3n+1 là d

=>3n+1\(⋮\)d     ; 2n+1 \(⋮\)d ;  

=>( 3n+1 ) - (2n+1) \(⋮\)d

=> n\(⋮\) d

=> 3n \(⋮\)d

Mà 3n+1\(⋮\)d nên :

3n+1 -3n \(⋮\)d

=> 1\(⋮\)d  => d= 1

=> ƯCLN (3n+1,2n+1) = 1

17 tháng 12 2017

Gọi d là ƯCLN (2n + 1, 3n + 1), d  \(\in\) N*

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+1⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+1\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+3⋮d\\6n+2⋮d\end{cases}}}\)

\(\Rightarrow\left(6n+3\right)-\left(6n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\RightarrowƯCLN\left(2n+1,3n+1\right)=1\)

27 tháng 11 2015

Gọi d là ƯCLN(2n+1;3n+1) với d thuộc N

Ta có 2n+1 chia hết cho d=> 3(2n+1 ) chia hết cho d => 6n +3 chia hết cho d (1)

          3n+1 chia hết cho d=> 2(3n+1) chia hết cho d => 6n+2 chia hết cho d (2)

Từ (1) và (2) suy ra (6n+3)-(6n+2) chia hết cho d

=> 1 chia hết cho d

=> d=1

Vậy ƯCLN của 2n+1 và 3n+1 là 1

 

27 tháng 11 2015

Gọi d là ƯCLN của 2n+1 và 3n+1 (d thuộc N*). Do đó:

  2n+1 chia hết cho d và 3n+1 chia hết cho d.

Vì 2n+1 chia hết cho d nên 3.(2n+1) chia hết cho d hay 6n+3 chia hết cho d

Vì 3n+1 chia hết cho d nên 2.(3n+1) chia hết cho d hay 6n+2 chia hết cho d nên:

              (6n+3) - (6n+2) chia hết cho d

               6n+3 - 6n - 2 chia hết cho d

                              1 chia hết cho d

suy ra d = 1

Vậy ƯCLN của 2n+1 và 3n+1 bằng 1

20 tháng 4 2018

Ta có:3n+1 chia hết cho d => 4(3n+1) chia hết cho d => 12n+4 d

4n+1 chia hết cho d => 3(3n+1) chia hết cho d => 12n+3 d

(12n+4 )- (12n+3) chia hết cho d

1 chia hết cho d

vậy 3n+1 và 4n+1 là hai số nguyên tố cùng nhau

24 tháng 1 2022

Refer:

Ta có:3n+1 chia hết cho d => 4(3n+1) chia hết cho d => 12n+4 d

4n+1 chia hết cho d => 3(3n+1) chia hết cho d => 12n+3 d

(12n+4 )- (12n+3) chia hết cho d

1 chia hết cho d

vậy 3n+1 và 4n+1 là hai số nguyên tố cùng nhau

24 tháng 1 2022

Dễ mà 

Ta có ƯC( 2n+1 và 3n+1) là d

=> 2n+1 và 3n+1 chia hết cho d

=> 3(2n+1) chia hết cho d

=> 2(3n+1) chia hết cho d

=> 6n+3và 6n+2 chia hết cho d

=> 6n+3 - 6n+2 chia hết cho d

=> 1 chia hết cho d

=> d=1

=> ƯC( 2n+1 và 3n+1)=1

=> đpcm 

bài này rất hóc búa!

vào câu hỏi tương tự nha!

23 tháng 12 2022

loading...

27 tháng 10 2023

 gải:

ta gọi x là ƯCLN của 2n+1 và 3n+1

suy ra: (2n+1) chia hết cho x

           (3n+1) chia hết cho x

suy ra: [3(2n+1)-2(3n+1)] chia hết cho x

hay 1 chia hết cho x

suy ra: x e Ư(1)

Ư(1)={1}

do đó x=1

nên ƯCLN(2n+1;3n+1)=1

vì ƯCLN  của 2n+1 và 3n+1 là 1 nên hai số này là hai số nguyên tố cùng nhau 

29 tháng 6 2023

 

  1. Giả sử 3n + 1 và 4n + 1 không là 2 số nguyên tố cùng nhau. Điều này có nghĩa là tồn tại một số nguyên dương k lớn hơn 1 sao cho k là ước chung của cả 3n + 1 và 4n + 1.

    Vì k là ước chung của cả 3n + 1 và 4n + 1, ta có:
    3n + 1 = ak (với a là một số nguyên)
    4n + 1 = bk (với b là một số nguyên)

    Từ đó, ta suy ra:
    4(3n + 1) - 3(4n + 1) = 4ak - 3bk
    12n + 4 - 12n - 3 = k(4a - 3b)
    1 = k(4a - 3b)

    Vì 1 là số nguyên tố duy nhất có 2 ước là 1 và chính nó, nên k phải bằng 1 hoặc -1.

    Nếu k = 1, ta có: 4a - 3b = 1
    Nếu k = -1, ta có: 4a - 3b = -1

    Trong cả hai trường hợp, ta đều có phương trình tuyến tính với ẩn a và b. Tuy nhiên, không thể tìm được giá trị nguyên của a và b để phương trình này đúng.

    Do đó, giả sử ban đầu là sai. Vậy ta kết luận rằng 3n + 1 và 4n + 1 là 2 số nguyên tố cùng nhau.

    9:38
  2.  
29 tháng 6 2023

Gọi ƯCLN(3n+1,4n+1) là d (d khác 0)

=> \(3n+1⋮d;4n+1⋮d\) 

=> \(4\left(3n+1\right)⋮d;3\left(4n+1\right)⋮d\) 

=> \(12n+4⋮d;12n+3⋮d\) 

=> \(\left(12n+4\right)-\left(12n+3\right)⋮d\) 

=> \(1⋮d\) 

=> \(d=1\) 

Vậy 3n+1; 4n+1 là 2 số nguyên tố cùng nhau