K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2017

a/ \(\Delta ABM\)và \(\Delta CDM\)có: AM = CM (M là trung điểm của AC)

\(\widehat{AMB}=\widehat{CMD}\)(đối đỉnh)

BM = DM (gt)

=> \(\Delta ABM\)\(\Delta CDM\)(c. g. c)

b) Ta có  \(\Delta ABM\)\(\Delta CDM\)(cm câu a) => \(\widehat{BAC}=\widehat{ACD}\)(hai góc tương ứng bằng nhau ở vị trí so le trong)

=> AB // CD (đpcm)

28 tháng 11 2021
S/fffffffffdsbdhdjndbdbdbfbfbdbbdbdbfndndndbfnfnfnfnfnfn
31 tháng 12 2023

a: Xét ΔAMB và ΔCMD có

MA=MC

\(\widehat{AMB}=\widehat{CMD}\)(hai góc đối đỉnh)

MB=MD

Do đó: ΔAMB=ΔCMD

b: ta có: ΔAMB=ΔCMD

=>\(\widehat{MAB}=\widehat{MCD}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//CD

c: Xét ΔIBM và ΔKDM có

IB=KD

\(\widehat{IBM}=\widehat{KDM}\)(hai góc so le trong, AB//CD)

BM=MD

Do đó: ΔIBM=ΔKDM

=>\(\widehat{IMB}=\widehat{KMD}\)

mà \(\widehat{IMB}+\widehat{IMD}=180^0\)(hai góc kề bù)

nên \(\widehat{KMD}+\widehat{IMD}=180^0\)

=>I,M,K thẳng hàng

a) Xét ΔABM và ΔCDM có 

MA=MC(M là trung điểm của AC)

\(\widehat{AMB}=\widehat{CMD}\)(hai góc đối đỉnh)

MB=MD(gt)

Do đó: ΔABM=ΔCDM(c-g-c)

b) Ta có: ΔABM=ΔCDM(cmt)

nên \(\widehat{ABM}=\widehat{CDM}\)(hai góc tương ứng)

mà \(\widehat{ABM}\) và \(\widehat{CDM}\) là hai góc ở vị trí so le trong

nên AB//CD(Dấu hiệu nhận biết hai đường thẳng song song)

c) Xét ΔDBN có 

M là trung điểm của BD(gt)

C là trung điểm của DN(gt)

Do đó: MC là đường trung bình của ΔDBN(Định nghĩa đường trung bình của tam giác)

Suy ra: MC//BN(Định lí 2 đường trung bình của tam giác)

hay BN//AC(đpcm)

14 tháng 12 2022

a) Xét ΔAMB;ΔCMD có :

AM=MC(gt)

AMB^=CMD^ (đối đỉnh)

BM=MD(gt)

=> ΔAMB=ΔCMD (c.g.c)

b) Xét ΔAMD;ΔCMB có :

BM=MD(gt)

BMC^=DMA^ (đối đỉnh)

AM=MC(gt)

=> ΔAMD=ΔCMB (c.g.c)

=> {MBC^=MDA^M^CB=MAD^ (2 góc tương ứng)

Mà : Các góc này ở vị trí so le trong

=> 

15 tháng 12 2017
nhanh giùm với
16 tháng 12 2017

(Bạn tự vẽ hình giùm)

a/ \(\Delta ADM\)và \(\Delta CBM\)có: AM = CM (M là trung điểm của AC)

\(\widehat{AMD}=\widehat{BMC}\)(đối đỉnh)

DM = BM (gt)

=> \(\Delta ADM\)\(\Delta CBM\)(c. g. c) => AD = BC (hai cạnh tương ứng)

b/ \(\Delta ABM\)và \(\Delta CDM\)có: AM = CM (M là trung điểm của AC)

\(\widehat{AMB}=\widehat{CMD}\)(đối đỉnh)

BM = DM (gt)

=> \(\Delta ABM\)\(\Delta CDM\)(c. g. c)

=> \(\widehat{BAM}=\widehat{MCD}=90^o\)(hai góc tương ứng)

=> AC _|_ CD (đpcm)

17 tháng 12 2022

a: Xét ΔABM và ΔCDM có

MA=MC

góc AMB=góc CMD

MB=MD

Do đó: ΔABM=ΔCDM

b: ΔABM=ΔCDM

nên AB=CD và góc ABM=góc CDM

=>AB//CD

=>CE vuông góc với AC

=>AC vuông góc DE

9 tháng 12 2018

a) CM Tam giac ABM = tam giac CDM

Xét tam giac ABM và Tam giác CDM, ta có:

MA = MC (gt)

MB=MD (gt)

Góc AMB = góc DMC (đđ)

Suy ra Tam giác ABM = Tam giác CDM

b) CM AB song song CD

Ta có: Góc MBA =góc MCD ( cmt)

Mà 2 góc này ở vị trí so le trong, nên suy ra AB//CD

c) CM E là trung điểm AC

Ta có: Tứ giác ABCD có:

M là trung điểm AC gt)

M là trung điểm BD (gt)

Mà AC cắt BD tại M

Suy ra: Tứ giac ABCD là hình bình hành

Ta lại có: MN là trung điểm BC , MN //AB//CD.

Do đó NE cũng //AB//CD , và E cũng là trung điểm của AD.

a: Xét ΔABM và ΔCDM có

MA=MC

\(\widehat{AMB}=\widehat{CMD}\)

MB=MD

Do đó: ΔABM=ΔCDM

b: ΔABM=ΔCDM

=>\(\widehat{MAB}=\widehat{MCD}=90^0\)

=>DC\(\perp\)AC

mà AC\(\perp\)AB

nên AB//DC

c: ΔMAB=ΔMCD

=>AB=CD

Xét ΔKAB và ΔKEC có

KA=KE

\(\widehat{AKB}=\widehat{EKC}\)

KB=KC

Do đó: ΔKAB=ΔKEC

=>AB=EC 

ΔKAB=ΔKEC

=>\(\widehat{KAB}=\widehat{KEC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//EC

AB//EC

AB//CD

CD,EC có điểm chung là C

Do đó: E,C,D thẳng hàng

AB=EC

AB=CD

Do đó: EC=CD

Ta có: E,C,D thẳng hàng

EC=CD

Do đó: C là trung điểm của ED

5:

a: ΔABC cân tại A

mà AH là trung tuyến

nên AH vuông góc BC

BH=CH=4cm

=>AH=căn 10^2-4^2=2*căn 21(cm)

b: Xét ΔIBH và ΔIAD có

góc IBH=góc IAD

IB=IA

góc BIH=góc AID

=>ΔIBH=ΔIAD

=>AD=BH=HC