chứng minh Q không phụ thuộc vào biến x và Q\(\ge\)0
\(Q=\frac{\left(x^2+n\right)\left(1+n\right)+n^2x^2+1}{\left(x^2-n\right)\left(1-n\right)+n^2x^2+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2a,\left(6x+7\right)\left(2x-3\right)-\left(4x+1\right)\left(3x-\frac{7}{4}\right)\)
\(=12x^2-18x+14x-21-12x^2+7x-3x+\frac{7}{4}\)
\(=-21+\frac{7}{4}\)chứng tỏ biểu thức ko phụ thuộc vào biến x
3, Đặt 2n+1=a^2; 3n+1=b^2=>a^2+b^2=5n+2 chia 5 dư 2
Mà số chính phương chia 5 chỉ có thể dư 0,1,4=>a^2 chia 5 dư 1, b^2 chia 5 dư 1=>n chia hết cho 5(1)
Tương tự ta có b^2-a^2=n
Vì số chính phươn lẻ chia 8 dư 1=>a^2 chia 8 dư 1 hay 2n chia hết cho 8=> n chia hết cho 4=> n chẵn
Vì n chẵn => b^2= 3n+1 lẻ => b^2 chia 8 dư 1
Do đó b^2-a^2 chia hết cho 8 hay n chia hết cho 8(2)
Từ (1) và (2)=> n chia hết cho 40
A=5; B=3; C=24 không phụ thuộc x; câu D thì mong bạn xem lại đề
\(A=\left(x^3+x^2+x\right)-\left(x^3+x^2\right)-x+5\)5
\(A=x^3+x^2+x-x^3-x^2-x+5\)
=> A=5
=> A luôn = 5 với mọi x => A không phụ thuộc vào x
\(B=x\left(2x+1\right)-x^2\left(x+2\right)+x^3-x+3\)
\(B=\left(2x^2+x\right)-\left(x^3+2x^2\right)+x^3-x+3\)
\(B=2x^2+x-x^3-2x^2+x^3-x+3\)
=> B= 3
=> B luôn =3 với mọi x => B không phụ thuộc vào x
\(C=4\left(6-x\right)+x^2\left(2+3x\right)-x\left(5x-4\right)+3x^2\left(1-x\right)\)
\(C=24-4x+2x^2+3x^3-5x^2+4x+3x^2-3x^3\)
C=24
=> C=24 với mọi x => C không phụ thuộc vào x
Câu D kí tự cuối có vẻ bạn gõ sai nên mình không làm được, sorry nhiều
A = x(x2 + x + 1) - x2(x + 1) - x + 5
A = x.x2 + x.x + x.1 + (-x2).x + (-x2).1 - x + 5
A = x3 + x2 + x - x3 - x2 - x + 5
A = (x3 - x3) + (x2 - x2) + (x - x) + 5
A = 0 + 0 + 0 + 5
A = 5
Vậy: Biểu thức không phụ thuộc giá trị của biến.
B = x(2x + 1) - x2(x + 2) + x3 - x + 3
B = x.2x + x.1 + (-x2).x + (-x2).2 + x3 - x + 3
B = 2x2 + x - x3 - 2x2 + x3 - x + 3
B = (2x2 - 2x2) + (x - x) + (-x3 + x3) + 3
B = 0 + 0 + 0 + 3
B = 3
Vậy: Biểu thức không phụ thuộc giá trị của biến.
C = 4(6 - x) + x2(2 + 3x) - x(5x - 4) + 3x2(1 - x)
C = 4.6 + 4.(-x) + x2.2 + x2.3x + (-x).5x + (-x).(-4) + 3x2.1 + 3x2.(-x)
C = 24 - 4x + 2x2 + 3x3 - 5x2 + 4x + 3x2 - 3x3
C = 24 + (-4x + 4x) + (2x2 - 5x2 + 3x2) + (3x3 - 3x3)
C = 24 + 0 + 0 + 0
C = 24
Vậy: Biểu thức không phụ thuộc giá trị của biến.
D viết sai thì chịu
Tử của P: \(T=x^2\left(1+a\right)+a\left(1+a\right)+a^2x^2+1=\left(1+a+a^2\right)x^2+\left(a^2+a+1\right)\)
\(T=\left(a^2+a+1\right)\left(x^2+1\right)\)
Mẫu của P:
\(M=x^2\left(1-a\right)-a\left(1-a\right)+a^2x^2+1=\left(1-a+a^2\right)x^2+\left(a^2-a+1\right)\)
\(M=\left(a^2-a+1\right)\left(x^2+1\right)\)
Ta có: \(x^2\ge0\Rightarrow x^2+1\ge1\Rightarrow\left(x^2+1\right)\ne0\forall x\)
a)\(P=\frac{T}{M}=\frac{\left(a^2+a+1\right)\left(x^2+1\right)}{\left(a^2-a+1\right)\left(x^2+1\right)}=\frac{\left(a^2+a+1\right)}{\left(a^2-a+1\right)}\)
b) từ (a) giá trị của P không con x trong biểu thức => P không phụ thuộc x--> dpcm
\(Q=\frac{\left(x^2+n\right)\left(1+n\right)+n^2x^2+1}{\left(x^2-n\right)\left(1-n\right)+n^2x^2+1}=\frac{x^2+n+x^2n+n^2+x^2n^2+1}{x^2-n-x^2n+n^2+n^2x^2+1}\)
\(=\frac{x^2\left(n^2+n+1\right)+n^2+n+1}{x^2\left(n^2-n+1\right)+n^2-n+1}=\frac{\left(x^2+1\right)\left(n^2+n+1\right)}{\left(x^2+1\right)\left(n^2-n+1\right)}=\frac{n^2+n+1}{n^2-n+1}\)
Vậy giá trị của biểu thức Q không phụ thuộc vào biến x