cho tam giác ABC vuông tại góc A có góc C= 45 độ, vẽ phân giác AD. Trên tia đối của tia AD lấy điểm E sao cho AE= BC.Trên tia đối của tia CA lấy điểm F sao cho CF= AB. CMR: BE=BF và BE vuông góc với BF.
Giải nhanh giúp mình nha.Mình đang cần gấp lắm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: EA = EC
FB=FC
=> FC/EC=FB/EA Theo Talét đảo => AE//BF 2.C = 45 độ
=> ABC là tam giác vuông cân tại A
Xét tam giác vuông BAF có BF^2=BA^2+AF^2=5BA^2 (1)
Dễ thấy AD là đường cao tam giác vuông cân ABC nên AD = BD =AB /2
AE = BC = AB căn2, pitago vào tam giác vuông EDB
=> BE2 = 5AB2 (2)
Từ (1) và (2)suy ra BE=BF
Vậy vuông góc chứng minh BEF =45 độ
Ta có: EA = EC
FB=FC
=> FC/EC=FB/EA
Theo Talét đảo => AE//BF 2.C = 45 độ
=> ABC là tam giác vuông cân tại A
Xét tam giác vuông BAF có
BF^2=BA^2+AF^2=5BA^2 (1)
Dễ thấy AD là đường cao tam giác vuông cân ABC nên AD = BD =AB /2
AE = BC = AB căn2, pitago vào tam giác vuông EDB => BE2 = 5AB2 (2)
Từ (1) và (2)suy ra BE=BF
Vậy vuông góc chứng minh BEF =45 độ
Câu hỏi là chứng minh BE = BF chứ có phải cm BEF= 45 độ đâu, sai rùi bn
Ta có: EA = EC
FB=FC
=> FC/EC=FB/EA Theo Talét đảo => AE//BF 2.C = 45 độ
=> ABC là tam giác vuông cân tại A
Xét tam giác vuông BAF có BF^2=BA^2+AF^2=5BA^2 (1)
Dễ thấy AD là đường cao tam giác vuông cân ABC nên AD = BD =AB /2
AE = BC = AB căn2, pitago vào tam giác vuông EDB
=> BE2 = 5AB2 (2)
Từ (1) và (2)suy ra BE=BF
Vậy vuông góc chứng minh BEF =45 độ
Ta có: EA = EC
FB=FC
=> FC/EC=FB/EA Theo Talét đảo => AE//BF 2.C = 45 độ
=> ABC là tam giác vuông cân tại A
Xét tam giác vuông BAF có BF^2=BA^2+AF^2=5BA^2 (1)
Dễ thấy AD là đường cao tam giác vuông cân ABC nên AD = BD =AB /2
AE = BC = AB căn2, pitago vào tam giác vuông EDB
=> BE2 = 5AB2 (2)
Từ (1) và (2)suy ra BE=BF
Vậy vuông góc chứng minh BEF =45 độ
ss="Apple-interchange-newline">
Ta có: EA = EC
FB=FC
=> FC/EC=FB/EA Theo Talét đảo => AE//BF 2.C = 45 độ
=> ABC là tam giác vuông cân tại A
Xét tam giác vuông BAF có BF^2=BA^2+AF^2=5BA^2 (1)
Dễ thấy AD là đường cao tam giác vuông cân ABC nên AD = BD =AB /2
AE = BC = AB căn2, pitago vào tam giác vuông EDB
=> BE2 = 5AB2 (2)
Từ (1) và (2)suy ra BE=BF
Vậy vuông góc chứng minh BEF =45 độ
Giải :
Có EA=EC
FB=FC
SUY RA FC/EC=FB/EA
theo Talét đảo suy ra AE//BF
2.C = 45 độ suy ra ABC là tam giác vuông cân tại A
XÉT tam giác vuông BAF có BF^2=BA^2+AF^2=5BA^2 (1)
Dễ thấy AD là đường cao tam giác vuông cân ABC nên AD=BD=ABcăn2/2
AE=BC=ABcăn2, pitago vào tam giác vuông EDB suy ra BE^2=5AB^2 (2)
Từ (1) và (2)suy ra BE=BF
CÁi vuông góc chứng minh BEF =45 độ
\(\widehat{A_2}=90^o:2=45^o\)
\(\Rightarrow\widehat{A_2}=\widehat{ACB}=\left(45^o\right)\)
do đó : \(\widehat{EAB}=\widehat{BCF}\)( kề bù với hai góc bằng nhau )
\(\Delta EAB=\Delta BCF\left(c.g.c\right)\)
suy ra : BE = BF và \(\widehat{B_1}=\widehat{F}\)
xét \(\Delta ABF\)vuông tại A có : \(\widehat{ABF}+\widehat{F}=90^o\)
\(\Rightarrow\widehat{ABF}+\widehat{B_1}=90^o\)hay \(\widehat{EBF}=90^o\)
Vậy BE = BF và BE \(\perp\)BF