K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2017

Ta có:\(a^3-3ab^2+b^3-3a^2b=15\)

\(\Rightarrow\left(a+b\right)\left(a^2-ab+b^2\right)-3ab\left(a+b\right)=15\)

\(\Rightarrow\left(a+b\right)\left(a^2-4ab+b^2\right)=15\)

Đến đây thì đơn giản rồi,bạn lập bảng xét ước nữa là xong

19 tháng 6 2021

@Khong Biet trả lời sai rồi. đây có phải bài nghiệm nguyên đâu mà lập bảng xét dấu

20 tháng 7 2021

Ta có: (a3 - 3ab22 = a- 6a4b+ 9a2b4 = 25

(b3 - 3a2b)= b6 - 6a4b2 + 9a4b2 = 100

⇒ (a3 - 3a2b)2 - (b3 - 3a2b)2 = a6 - 6a4b2 + 9a2b4 + b6 - 6a2b4 + 9a4b2 = 125

⇔ a6 + 3a4b2  = 3a2b4 + b6 = 125

⇔ (a2 + b2)3 = 125

⇒ a2 + b2 = 5

6 tháng 10 2023

Ta có: (a3 - 3ab22 = a- 6a4b+ 9a2b4 = 25

(b3 - 3a2b)= b6 - 6a4b2 + 9a4b2 = 100

⇒ (a3 - 3a2b)2 - (b3 - 3a2b)2 = a6 - 6a4b2 + 9a2b4 + b6 - 6a2b4 + 9a4b2 = 125

⇔ a6 + 3a4b2  + 3a2b4 + b6 = 125

⇔ (a2 + b2)3 = 125

⇒ a2 + b2 = 5

15 tháng 1 2018

Giống tui nhỉ

2 tháng 1 2020

dễ thôi . bạn bình  phương 2 cái họ cho  đó sau đó cộng  lại. tìm đc a^2 + b^2 bằng 5 thì phải ( mk nhẩm thế ) sao đó tính là xong

1 tháng 11

a2 + b2 = 5

29 tháng 3 2023

\(a^3-3ab^2=-2\)

\(\Rightarrow\left(a^3-3ab^2\right)^2=4\)

\(\Rightarrow a^6-6a^4b^2+9a^2b^4=4\left(1\right)\)

\(b^3-3a^2b=11\)

\(\Rightarrow\left(b^3-3a^2b\right)^2=121\)

\(\Rightarrow b^6-6a^2b^4+9a^4b^2=121\left(2\right)\)

\(\left(1\right)+\left(2\right)\Rightarrow a^6+3a^4b^2+3a^2b^4+b^6=125\)

\(\Rightarrow\left(a^2+b^2\right)^3=125\Rightarrow a^2+b^2=5\)

29 tháng 3 2023

Cảm ơn bạn nhahaha

10 tháng 6 2021

b) Ta có  \(\hept{\begin{cases}3a=2b\\a-b=1\end{cases}}\Rightarrow a=\frac{2}{3}b=b+1\Rightarrow\hept{\begin{cases}b=-3\\a=-2\end{cases}}\)

Khi đó  B = a3 - 3ab + b3 

\(\left(-2\right)^3-3\left(-2\right)\left(-3\right)+\left(-3\right)^3=-8-18-27=-53\)

a) Tương từ câu b) ta tìm được a = -2 ; b = -3

Khi đó A = \(\left(-2\right)^3-12\left(-2\right)^2\left(-3\right)+48\left(-2\right)\left(-3\right)^2-64\left(-3\right)^3\)

\(=-8+144-864+1728=1000\)

5 tháng 3 2019

Ta có : \(\left(a^2+b^2\right)^3=a^6+3a^4b^2+3a^2b^4+b^6\)

                                   \(=\left(a^6-6a^4b^2+9a^2b^4\right)+\left(b^6-6a^2b^4+9a^4b^2\right)\)

                                   \(=\left(a^3-3ab^2\right)^2+\left(b^3-3a^2b\right)^2\)

                                   \(=5^2+10^2\)

                                    \(=125\)

\(\Rightarrow S^3=125\)

\(\Rightarrow S=5\)