cho a,b,c>0
chứng minh: m=a/(a+b) + b/(b+c) + c/(c+a) không phải số nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ ý
Nếu a,b,c > 0
--- Chắc chắn là (a/a+b) + (b/b+c) + (c/c+a) khác 0 và khong phải là số nguyên rồi
M = a / a+b = b / b+c = c / c+a = a + b + c / (a+b) + (b+c) + (c+a) = a+b+c / (a+a) + (b+b) + (c+c)
= a+b+c / 2a + 2b + 2c = a+b+c / 2(a+b+c) = 1/2 không phải là số nguyên => M không thuộc Z.
Phan Thanh Tịnh giải sai bét rồi, "+" chứ có phải "-" đâu mà áp dung dãy tỉ số bằng nhau đc
đb bị thiếu nhá bn, mik bổ sung ns sẽ thành: thỏa mãn a\(\le b\le c\)
Ta có : \(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)
Vì vai trò của a,b,c là như nhau nên ta giả sử \(0< a< b< c\)
Khi đó : \(\frac{a}{a+b}>\frac{a}{a+b+c}\); \(\frac{b}{b+c}>\frac{b}{a+b+c}\); \(\frac{c}{c+a}>\frac{c}{a+b+c}\)
\(\Rightarrow M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a+b+c}{a+b+c}=1\)(1)
Lại có : \(\frac{a}{a+b}< \frac{a+c}{a+b+c}\); \(\frac{b}{b+c}< \frac{a+b}{a+b+c}\) ; \(\frac{c}{c+a}< \frac{c+b}{a+b+c}\)
Cộng các bđt trên theo vế : \(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{b+c}{a+b+c}+\frac{c+a}{a+b+c}+\frac{a+b}{a+b+c}\)
\(\Rightarrow M< \frac{2\left(a+b+c\right)}{a+b+c}=2\)
Suy ra ta có : 1 < M < 2
=> M không thể là số nguyên.
Đề là thế này ak:
Chứng minh \(M=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\) không phải là số nguyên
#)Giải :
Ta có : \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)
Lại có : \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+b}{a+b+c}+\frac{b+c}{a+b+c}+\frac{c+a}{a+b+c}=2\)
\(\Rightarrow1< M< 2\)
\(\Rightarrow\) M không phải là số nguyên
Vì a,b,c, > 0 nên
\(\frac{a}{a+b+c}< \frac{a}{a+b}< \frac{a+c}{a+b+c}\)(1)
\(\frac{b}{a+b+c}< \frac{b}{b+c}< \frac{a+b}{a+b+c}\)(2)
\(\frac{c}{a+b+c}< \frac{c}{c+a}< \frac{c+b}{a+b+c}\)(3)
Cộng từng vế của (1), (2), (3) suy ra \(1< M< 2\)
Vậy M không là số nguyên
Ta có: \(\frac{a}{a+b}>\frac{a}{a+b+c};\frac{b}{b+c}>\frac{b}{a+c+b};\frac{c}{c+a}>\frac{c}{a+b+c}\)
\(\Rightarrow M>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)
=> M>1 (1)
Lại có: \(\frac{a}{a+b}< \frac{a+c}{a+b+c};\frac{b}{b+c}< \frac{a+b}{a+b+c};\frac{c}{a+c}< \frac{c+b}{a+b+c}\)
\(\Rightarrow M< \frac{a+c}{a+b+c}+\frac{a+b}{a+b+c}+\frac{c+b}{a+b+c}=2\)
=> M<2 (2)
Từ (1)(2) => 1<M<2 => M không là số nguyên (đpcm)
ta có\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{c+a+b}=1\)
ta lại có tương tự M<2
suy ra Mko ơphair số nguyên
Vì a/a+b > 0 nên a/a+b > a/a+b+c
Tương tự : b/b+c > b/a+b+c ; c/c+a > c/a+b+c
=> m > a+b+c/a+b+c = 1 (1)
Lại có : 0 < a/a+b < 1 nên a/a+b < a+c/a+b+c
Tương tự : b/b+c < b+a/a+b+c ; c/c+a < c+b/a+b+c
=> m < 2a+2b+2c/a+b+c = 2 (2)
Từ (1) và (2) => 1 < m < 2
=> m ko phải là số nguyên
k mk nha