K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2020

ai giup mik voi 

 

 

 

a: Xét ΔBAD có

M,Q lần lượt là tđiểm của AB và AD

nên MQ là đường trung bình

=>MQ//BD và MQ=BD/2(1)

Xét ΔBCD có

N,P lần lượt là trung điểm của CB và CD

nên NP là đường trung bình

=>NP//BD và NP=BD/2(2)

Từ (1) và (2) suy a MQ//NP và MQ=NP

=>MNPQ là hình bình hành

b: Xét ΔABC có

M,N lần lượt là trung điểm của BA và BC

nên MN là đường trung bình

=>MN=AC/2 và MN//AC

Để MNPQ là hình chữ nhật thì MN vuông góc với MQ

=>AC vuông góc với BD

19 tháng 10 2021

a: Xét ΔABD có 

E là trung điểm của AB

H là trung điểm của AD

Do đó: EH là đường trung bình của ΔABD

Suy ra: EH//BD và \(EH=\dfrac{BD}{2}\left(1\right)\)

Xét ΔBCD có 

F là trung điểm của BC

G là trung điểm của DC

Do đó: FG là đường trung bình của ΔBCD

Suy ra: FG//BD và \(FG=\dfrac{BD}{2}\left(2\right)\)

Từ (1) và (2) suy ra EH//GF và EH=GF

hay EHGF là hình bình hành

26 tháng 9 2021

mọi người giúp mình với

 

2 tháng 5 2020

Bài 1 : 

\(x^2y+4xy+4y=162x-162\)

\(\Rightarrow y\left(x^2+4x+4\right)=162\left(x-1\right)\)

\(\Rightarrow y=\frac{162\left(x-1\right)}{x^2+4x+4}\)

Vì \(y\in Z\Rightarrow\frac{162\left(x-1\right)}{x^2+4x+4}\in Z\)

\(\Rightarrow\frac{162\left(x-1\right)\left(x+5\right)}{x^2+4x+4}\in Z\)

\(\Rightarrow\frac{162\left(x^2+4x-5\right)}{x^2+4x+4}\in Z\)

\(\Rightarrow\frac{162\left(x^2+4x+4-9\right)}{x^2+4x+4}\in Z\)

\(\Rightarrow162-\frac{1458}{x^2+4x+4}\in Z\)

\(\Rightarrow\frac{1458}{\left(x+2\right)^2}\in Z\)

\(\Rightarrow\left(x+2\right)^2\in\left\{729,81,9\right\}\) vì \(\left(x+2\right)^2\) là số chính phương x>0

\(\Rightarrow x+2\in\left\{27,9,3\right\}\)

\(\Rightarrow x\in\left\{25,7,1\right\}\)

\(\Rightarrow y\in\left\{\frac{16}{3},12,0\right\}\)

\(\Rightarrow\left(x,y\right)\in\left\{\left(7,12\right),\left(1,0\right)\right\}\)

2 tháng 5 2020

Bài 2 : 

a,

E, F, G, H lần lượt là trung điểm của các cạnh AB,BC, CD, DA nên ta có:

EF là đường trung bình trong tam giác ABC nên \(\hept{\begin{cases}EF//AC\\EF=\frac{1}{2}AC\end{cases}}\)

GH là đường trung bình trong tam giác DAC nên  \(\hept{\begin{cases}GH//AC\\GH=\frac{1}{2}AC\end{cases}}\)

Tứ giác EFGH có \(\hept{\begin{cases}GH//FE\\GH=FE=\frac{1}{2}AC\end{cases}}\) nên EFGH là hình bình hành

b,

EFGH là hình chữ nhật khi và chỉ khi EF vuông góc với FG hay AC vuông góc BD

a) Xét ΔABC có

E là trung điểm của AB(gt)

F là trung điểm của BC(gt)

Do đó: EF là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

⇒EF//AC và \(EF=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)(1)

Xét ΔADC có

H là trung điểm của AD(gt)

G là trung điểm của CD(gt)

Do đó: HG là đường trung bình của ΔADC(Định nghĩa đường trung bình của tam giác)

⇒HG//AC và \(HG=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)(2)

Từ (1) và (2) suy ra HG//EF và HG=EF

Xét ΔABD có 

E là trung điểm của AB(gt)

H là trung điểm của AD(gt)

Do đó: EH là đường trung bình của ΔABD(Định nghĩa đường trung bình của tam giác)

⇒EH//BD và \(EH=\dfrac{BD}{2}\)(Định lí 2 về đường trung bình của tam giác)

Ta có: EH//BD(cmt)

BD⊥AC(gt)

Do đó: EH⊥AC(Định lí 2 từ vuông góc tới song song)

Ta có: HG//AC(cmt)

EH⊥AC(Cmt)

Do đó: HG⊥HE(Định lí 2 từ vuông góc tới song song)

hay \(\widehat{EHG}=90^0\)

Xét tứ giác EHGF có 

HG//EF(cmt)

HG=FE(cmt)

Do đó: EHGF là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Hình bình hành EHGF có \(\widehat{EHG}=90^0\)(cmt)

nên EHGF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

b) Ta có: EFGH là hình chữ nhật(cmt)

nên \(S_{EFGH}=EF\cdot EH\)

\(\Leftrightarrow S_{EFGH}=\dfrac{AC}{2}\cdot\dfrac{BD}{2}=\dfrac{10}{2}\cdot\dfrac{8}{2}=5\cdot4=20cm^2\)

Vậy: Diện tích tứ giác EFGH khi AC=10cm và BD=8cm là 20cm2

c) Hình chữ nhật EFGH trở thành hình vuông khi EH=HG

hay AC=BD

Vậy: Khi tứ giác ABCD có thêm điều kiện AC=BD thì EFGH trở thành hình vuông

a: Xét ΔBAC có

M,N lần lượt là trung điểm của BA,BC

=>MN là đường trung bình

=>MN//AC và MN=AC/2

Xét ΔDCA có

E,F lần lượt là trung điểm của CD,DA

=>EF là đường trung bình

=>EF//AC và EF=AC/2

=>MN//EF và MN=EF

Xét tứ giác MNEF có

MN//EF

MN=EF

Do đó: MNEF là hình bình hành

b: Để MNEF là hình chữ nhật thì MN vuông góc NE

mà MN//AC và NE//BD

nên AC vuông góc BD