tìm các số tự nhiên a,b biết a.b=168 và a<b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(10^a+168=\left(...0\right)+\left(...8\right)=\left(...8\right)\) , có tận cùng là 8 không thể là số chính phương nên khác b2.
Vậy không tồn tại cặp số a,b thỏa mãn đề bài.
1)
a.b=42 => a,b ∈ Ư(42)= {1;2;3;6;7;14;21;42}
a,b là 2 số tự nhiên và a.b=42 => (a;b)= (6;7) (Nhận) ; (a;b)= (7;6) (Loại)
=> a=6;b=7
2)
a.b=30 => a;b ∈ Ư(30)= {1;2;3;5;6;10;15;30}
Các cặp ban đầu (1;30) loại; (2;15) loại; (3;10) loại; (5;6) nhận
Vì: a < b => a=5;b=6
\(ƯCLN\left(a,b\right)=5\Rightarrow\left\{{}\begin{matrix}a=5k\\b=5q\end{matrix}\right.\left(k,q\in N\text{*}\right)\\ ab=250\\ \Rightarrow25kq=250\\ \Rightarrow kq=10=2.5=10.1\)
Mà \(k>q;\left(k,q\right)=1\Rightarrow\left(k;q\right)\in\left\{\left(10;1\right);\left(5;2\right)\right\}\)
\(\Rightarrow\left(a;b\right)\in\left\{\left(50;5\right);\left(25;10\right)\right\}\)
ab = BCNN ( a , b ) . ƯCLN(a,b)
36 = BCNN(a,b) . 3
Ư CLN(a,b) = 3 suy ra a = 3m , b = 3n
mà ab = 36 thì 3m . 3n = 36
9 . m . n = 36
m . n = 36 : 9
m . n = 4
rồi bạn kẻ bảng ra và ghi tất cả những số nhân với nhau để đc ra 4 ( VD : 1 . 4 ; 4. 1 ; 2 . 2 ) rồi bạn thử m và n lần lượt là các số đấy nếu nó ra số tự nhiên thì bạn ghi ở dưới hoặc bên cạnh là Thỏa Mãn ( TM ) rồi ta kết luận thôi nhé :)!
Theo công thức ta có:
a.b=BCNN(a,b).UCLN(a,b)=360
=> UCLN(a,b)=6
Đặt: a=6m; b=6n
=> mn=10=>m;n E {(1;10);(2;5);(5;2);(10;1)}
=> a;b E {(6;60);(12;30);(30;12);(60;6)}
b, tương tự cách làm trên
a) a.b=360,BCNN(a,b)=60
Ta có:ƯCLN(a,b).BCNN(a,b)=a.b
ƯCLN(a,b).60=360
ƯCLN(a.b)=6
Suy ra a=6m,b=6n với ƯCLN(m,n)=1
thay a=6m,b=6n vào a.b=360 ta được
6m.6n=360
36mn=360
mn=10
m | 5 | 1 | 2 | 10 |
n | 2 | 10 | 5 | 2 |
do đó
a | 30 | 6 | 12 | 60 |
b | 12 | 60 | 30 | 6 |
(câu b gần giống )
1.
\(ƯCLN\left(a,b\right)=7\)
\(\Rightarrow a,b\)chia hết cho 7
\(\Rightarrow a,b\in B\left(7\right)\)
\(B\left(7\right)=\left(0;7;14;21;28;35;42;49;56;63;70;77;84;91;98;105...\right)\)
a, vì a+b=56 \(\Rightarrow\)\(a\le56;b\le56\)
\(\Rightarrow a=56;b=0.a=0;b=56\)
\(a=7;b=49.a=49;b=7\)
\(a=14;b=42.a=42;b=14\)
\(a=21;b=35.a=35;b=21\)
\(a=b=28\)
b, a.b=490 \(\Rightarrow a< 490;b< 490\)
\(\Rightarrow\) \(a=7;b=70-a=70;b=7\)
\(a=14;b=35-a=35;b=14\)
c, BCNN (a,b) = 735
\(\Rightarrow a,b\inƯ\left(735\right)\)
\(Ư\left(735\right)=\left(1;3;5;7;15;21;35;49;105;147;245;735\right)\)
\(\Rightarrow\)\(a=7;b=105-a=105;b=7\)
2.
a+b=27\(\Rightarrow\)\(a\le27;b\le27\)
ƯCLN(a,b)=3
\(\Rightarrow a,b\in B\left(_{ }3\right)\in\left(0;3;6;9;12;15;18;21;24;27;30;...\right)\)
BCNN(a,b)=60
\(\Rightarrow a,b\inƯ\left(60\right)\in\left(1;2;3;4;5;6;10;12;15;20;60\right)\)
\(\Rightarrow\)\(a=12;b=15-a=15;b=12\)
Ta có: ƯCLN(a;b) = 5
=> a \(⋮\)5 ; b \(⋮\)5
=> a = 5k, b = 5h ( k và h là các số nguyên tố cùng nhau)
Mà a . b = 50
=> 5k . 5h = 50
=> (5 . 5) . (k . h) = 50
<=> 25 . k . h = 50
<=> k . h = 50 : 25
<=> k . h = 2
Mà k ; h nguyên tố cùng nhau
=> k . h = 1 . 2
=> \(\hept{\begin{cases}k=1\\h=2\end{cases}}\)=> \(\hept{\begin{cases}a=1\cdot5=5\\b=2\cdot5=10\end{cases}}\)
gọi hai số cần tìm là a,b
vi UCLN(a;b) =5
=> a chia het cho 5, b chia het cho 5(UCLN(m;n)=1)
neu m=1 va n=12 thi a=5 va b=60
neu m=12 va n=1 thi a=60 va b=5
neu m=3 va n=4 thi a=15 va b=20
neu m=4 va n=3 thi a=20 va b=15
a=8
b=21
a=1 thì b=168
a=2 thì b=84
a=3 thì b=56
a=4 thì b=42
a=6 thì b=28
a=7 thì b=24
a=8 thì b=21
a=12 thì b=14