Tìm x, y thuộc N
biết xy + 2y - x -y = 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>x-xy+y=0
=>x(1-y)+1-y-1=0
=>(x+1)(1-y)=1
=>(x+1)(y-1)=-1
=>\(\left(x+1;y-1\right)\in\left\{\left(-1;1\right);\left(1;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(-2;2\right);\left(0;0\right)\right\}\)
b: 2x-xy-2y=3
=>x(2-y)-2y+4=7
=>x(2-y)+2(2-y)=7
=>(x+2)(y-2)=-7
=>\(\left(x+2;y-2\right)\in\left\{\left(1;-7\right);\left(-7;1\right);\left(-1;7\right);\left(7;-1\right)\right\}\)
=>\(\left(x;y\right)\in\left\{\left(-1;-5\right);\left(-9;3\right);\left(-3;9\right);\left(5;1\right)\right\}\)
c: =>x(4-y)+5y-20=-3
=>x(4-y)-5(4-y)=-3
=>(4-y)(x-5)=-3
=>(x-5)(y-4)=3
=>\(\left(x-5;y-4\right)\in\left\{\left(1;3\right);\left(3;1\right);\left(-1;-3\right);\left(-3;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(6;9\right);\left(8;5\right);\left(4;1\right);\left(2;3\right)\right\}\)
a) \(xy+x+2y=5\\ \Rightarrow y\left(x+2\right)+x+2=5+2\\ \Rightarrow\left(x+2\right)\left(y+1\right)=7\)
Ta xét bảng:
x+2 | 1 | 7 | -1 | -7 |
x | -1 | 5 | -3 | -9 |
y+1 | 7 | 1 | -7 | -1 |
y | 6 | 0 | -8 | -2 |
Vậy \(\left(x;y\right)\in\left\{\left(-1;6\right);\left(5;0\right);\left(-3;-8\right);\left(-9;-2\right)\right\}\)
b) \(xy-3x-y=0\\ \Rightarrow x\left(y-3\right)-y+3=3\\ \Rightarrow\left(y-3\right)\left(x-1\right)=3\)
Ta xét bảng:
x-1 | 1 | 3 | -1 | -3 |
x | 2 | 4 | 0 | -2 |
y-3 | 3 | 1 | -3 | -1 |
y | 6 | 4 | 0 | 2 |
Vậy \(\left(x;y\right)\in\left\{\left(2;6\right);\left(4;4\right);\left(0;0\right);\left(-2;2\right)\right\}\)
c) \(xy+2x+2y=-16\\ \Rightarrow x\left(y+2\right)+2y+4=-12\\ \Rightarrow\left(y+2\right)\left(x+2\right)=-12\)
Ta xét bảng:
x+2 | 1 | 2 | 3 | 4 | 6 | 12 | -1 | -2 | -3 | -4 | -6 | -12 |
x | -1 | 0 | 1 | 2 | 4 | 10 | -3 | -4 | -5 | -6 | -8 | -14 |
y+2 | -12 | -6 | -4 | -3 | -2 | -1 | 12 | 6 | 4 | 3 | 2 | 1 |
y | -14 | -8 | -6 | -5 | -4 | -3 | 10 | 4 | 2 | 1 | 0 | -1 |
Vậy \(\left(x;y\right)\in\left\{\left(-1;-14\right);\left(0;-8\right);\left(1;-6\right);\left(2;-5\right);\left(4;-4\right);\left(10;-3\right);\left(-3;10\right);\left(-4;4\right);\left(-5;2\right);\left(-6;1\right);\left(-8;0\right);\left(-14;-1\right)\right\}\)
=> (y+1)x + 2y = 5
=> (y+1)x+2y+2=7
=>(y+1)x+2(y+1)=7
=>(y+1)(x+2) = 7
Do, x,y thuộc N nên ta xét:
TH1: y+1=1, x+2=7=> y=0, x=5
TH2: y+1=7, x+2=1=> x=6,x=-1(loại)
vậy y=0 và x=5
Ta có :
\(xy+x+2y=5\)
\(\Rightarrow\left(xy+2y\right)+x+2=7\)
\(\Rightarrow y\left(x+2\right)+\left(x+2\right)=7\)
\(\Rightarrow\left(x+2\right)\left(y+1\right)=7\)
Do \(x;y\in N\)
\(\Rightarrow x+2;y+1\in N\)
Mà \(x+2;y+1\inƯ\left(7\right)\)
\(\Rightarrow x+2;y+1\in\left\{1;7\right\}\)
Ta có bảng sau :
\(x+2\) | \(1\) | \(7\) |
\(y+1\) | \(7\) | \(1\) |
\(x\) | \(-1\left(L\right)\) | \(5\) |
\(y\) | \(6\) | \(0\) |
Vậy \(x=5;y=0\)
xy + 2y - x -y = 5
<=> xy + y - x = 5
<=> xy + y - x -1 = 5 -1
<=> (xy + y) - (x +1)= 4
<=> y (x+1) - (x+1) = 4
<=> (x +1) (y -1) = 4
ta có 4 = 4.1 hoặc 4 = 2.2
Vậy các cặp x, y thỏa mãn là:
x = 0; y= 5
x = 3; y = 2
x = 1; y = 3