K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2017

\(\frac{a}{b}=\frac{c}{d}=\frac{2c}{2d}\Rightarrow\frac{a+2c}{b+2d}\)

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a+c}{b+d}\)

\(\Rightarrow\frac{a+2c}{b+2d}=\frac{a+c}{b+d}\Rightarrow\left(a+2c\right)\left(b+d\right)=\left(a+c\right)\left(b+2d\right)\)

18 tháng 3 2018

ta có: \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow\frac{a}{b}=k\Rightarrow a=bk\)

\(\frac{c}{d}=k\Rightarrow c=dk\)

thay vào \(\left(a+2c\right).\left(b+d\right)=\left(bk+2dk\right).\left(b+d\right)=k.\left(b+2d\right).\left(b+d\right)\)

\(\left(a+c\right).\left(b+2d\right)=\left(bk+dk\right).\left(b+2d\right)=k.\left(b+d\right).\left(b+2d\right)\)

\(\Rightarrow\left(a+2c\right).\left(b+d\right)=\left(a+c\right).\left(b+2d\right)\left(=k.\left(b+2d\right).\left(b+d\right)\right)\)( đ p c m)

CHÚC BN HỌC TỐT!!!!!!!!

18 tháng 3 2018

Ta có:

\(\left(a+2c\right).\left(b+d\right)=\left(a+c\right).\left(b+2d\right)\)

\(ab+ad+2cb+2cd=ab+2ad+cb+2cd\)

\(cb=ad\Rightarrow\frac{a}{b}=\frac{c}{d}\)

23 tháng 10 2016

Giải:

a) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{2c}{2d}=\frac{a+2c}{b+2d}\)

\(\Rightarrow\frac{a}{b}=\frac{a+2c}{b+2d}\left(đpcm\right)\)

b) Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(\Rightarrow a=bk,c=dk\)

Ta có:

\(\frac{bk-b}{b}=\frac{b\left(k-1\right)}{b}=k-1\) (1)

\(\frac{a+c-b-d}{b+d}=\frac{bk+dk-b-d}{b+d}=\frac{\left(bk-b\right)+\left(dk-d\right)}{b+d}=\frac{\left[b\left(k-1\right)+d\left(k-1\right)\right]}{b+d}=\frac{k-1.\left(b+d\right)}{b+d}=k-1\) (2)

Từ (1) và (2) suy ra \(\frac{a-b}{b}=\frac{a+c-b-d}{b+d}\left(đpcm\right)\)

21 tháng 11 2019

I DON NO

21 tháng 11 2019

a/b = c/d

=> a = bk và c = dk

thay vào ta có : 

(bk + 2dk)(b+d) = (bk+dk)(b+2d)

=> k(b+2d)(b+d) = k(b+d)(b+2d)

xong rồi nha

4 tháng 8 2017

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{2c^2}{2d^2}=\frac{a}{b}=\frac{2c^2-ac}{2d^2-bd}\)

Vậy...

Ps : Cái này mk học roy nên chắc v! 

4 tháng 8 2017

mk cũng đang hóng suốt từ sáng câu hỏi này, cảm ơn bn

19 tháng 12 2016

Từ \(\left(a+2c\right)\left(b+d\right)=\left(a+c\right)\left(b+2d\right)\)

\(\Rightarrow\frac{a+2c}{b+2d}=\frac{a+c}{b+d}\)(*). Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)

VT(*)=\(\frac{bk+2dk}{b+2d}=\frac{k\left(b+2d\right)}{b+2d}=k\left(1\right)\)

VP(*)=\(\frac{bk+dk}{b+d}=\frac{k\left(b+d\right)}{b+d}=k\left(2\right)\)

Từ (1) và (2) ta có Đpcm

19 tháng 12 2016

Vậy thôi nhưng mak ko cần xoắn như cj Thắng

Áp dụng t/c của dãy tỉ số = nhau ta có:

a/b = c/d = 2c/2d = a+c/b+d = a+2c/b+2d

=> (b+d)(a+2c) = (a+c)(b+2d) (đpcm)

26 tháng 12 2019

Ta có: \(\frac{a}{b}=\frac{c}{d}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\) (1).

Có: \(\frac{a}{b}=\frac{c}{d}.\)

\(\Rightarrow\frac{a}{b}=\frac{2c}{2d}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a}{b}=\frac{2c}{2d}=\frac{a+2c}{b+2d}\) (2).

Từ (1) và (2) \(\Rightarrow\frac{a+c}{b+d}=\frac{a+2c}{b+2d}.\)

\(\Rightarrow\left(a+2c\right).\left(b+d\right)=\left(a+c\right).\left(b+2d\right)\left(đpcm\right).\)

Chúc bạn học tốt!

20 tháng 5 2018

từ \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\)ad = bc \(\Rightarrow\)ad + 2bc = bc + 2ad

\(\Rightarrow\)ab + ad + 2bc + 2cd = ab + 2ad + bc + 2cd

\(\Rightarrow\)a ( b + d ) + 2c ( b + d ) = a ( b + 2d ) + c ( b + 2d )

\(\Rightarrow\)( a + 2c ) ( b + d ) = ( a + c ) ( b + 2d )

20 tháng 5 2018

\(\frac{a}{b}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}=\frac{c}{d}\)\(=\frac{2c}{2d}\)

\(\Rightarrow\frac{a}{b}=\frac{c}{d}=\frac{2c}{2d}=\frac{a+2c}{b+2d}=\frac{a+c}{b+d}\)

\(\Rightarrow\text{(a+2c)(b+d)=(a+c)(b+2d)  ( đpcm)}\)