Các số sau có là số chính phương không?
a, A= \(3+3^2+3^3+...+3^{2008}\)
b, B= \(11^{2001}+11^{2002}+11^{2003}+...+11^{2007}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta coi :
(X1)n có tận cùng là 1 nên mỗi số hạng của tổng đều tận cùng bằng 1.
Do đóï M = A1+ B1+ C1+D1+ E1+ F1+ G1 có tận cùng bằng 7 nên không là số chính phương.
Vì 11 có tận cùng là 1 => Khi nâng lên luỹ thừa bậc mấy, chữ số tận cùng vẫn bằng 1
Từ 2001 đến 2007 có 7 số hạng.
=> Chữ số tận cùng của tổng B là 1 x 7 = 7
Vì các số chính phương không thể tận cùng bằng 2, 3, 7, 8 => tổng B không thể là số chính phương.
Thấy số chính phương là các số có dạng 3k hoặc 3k+1
A=1015+1=1000.....000000000001
Tổng các chữ số của A là 1+0+0+...+0+1=2
2 có dạng 3k+2
=> A có dạng 3k+2 nên A ko phải số chính phương
B chia hết cho B thì chắc chia hết cho 3
C thì
2) x2 + y2 = 3z2 => x2 + y2 chia hết cho 3
Vì x2 ; y2 là số chính phương nên x2 ; y2 chia cho 3 dư 0 hoặc 1
Nếu x2 hoặc y2 hoặc x2 và y2 chia cho 3 dư 1 => x2 + y2 chia cho 3 dư 1 hoặc 2 ( trái với đề bai)
=> x2 ; y2 đều chia hết cho 3. 3 là số nguyên tố => x; y đều chia hết cho 3
=> x2; y2 chia hết cho 9 => 3z2 chia hết cho 9 => z2 chia hết cho 3 ; 3 là số nguyên tố => z chia hết cho 3
Vậy...
Lời giải:
Ta có:
\(B=11^{2001}+11^{2002}+....+11^{2007}\)
\(B=11^{2001}(1+11^{1}+11^{2}+...+11^6)\)
Giả sử B là số chính phương. Khi đó số mũ của $11$ trong phân tích B phải là số chẵn
Mà 2011 là số lẻ nên \(1+11^1+11^2+...+11^6=11^{2k+1}.A\) với A, k là một số nào đó
\(\Rightarrow 1+11^1+....+11^{6}\vdots 11\)
\(\Leftrightarrow 1\vdots 11\) (vô lý)
Vậy B không phải số chính phương.
em có cách giải khác cô
Ta có biểu thức B có số tận cùng là 1 nên mỗi số hạng của tổng đều tận cùng là 1
Nên B=...1+....1+...1+....+....1=.....7 mà 7 ko phải là số chính phương nên biểu thức này ko phải là số chính phương
Tick em nha cô
a, Dễ thấy A chia hết cho 3 nguyên tố (1)
Mà 3^2;3^3;...3^2008 đều chia hết cho 9 và 3 ko chia hết cho 9 => A ko chia hết cho 9 = 3^2 (2)
Từ (1) và (2) => A ko phải là số chính phương
k mk nha