DÙNG HẰNG ĐẲNG THỨC ĐỂ TÍNH \(\left(3-a\right)^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) = (x+1-x+1)(x2+2x+1+x2-1+x2-2x+1)- 6(x2-1)
= 2( 3x2+1)- 6(x2-1)
= 2( 3x2+1-3x2+3)
=2. 4
=8
\(=3x^2\left(x^2-1\right)+\left(x^8-3x^4+3x^2-1\right)-\left(x^8-1\right)\)
\(=3x^4-3x^2+x^8-3x^4+3x^2+1-x^8+1\)
\(=2\)
=2 nha ban
(con cach lam ban nhan dang thuc len rui rut gon lai)
a) \(\left(4\sqrt{2}+\sqrt{30}\right)\left(\sqrt{5}-\sqrt{3}\right).\sqrt{4-\sqrt{15}}\)
\(=\left(4\sqrt{10}-4\sqrt{6}+\sqrt{150}-\sqrt{90}\right).\sqrt{\dfrac{8-2\sqrt{15}}{2}}\)
\(=\left(4\sqrt{10}-4\sqrt{6}+\sqrt{25.6}-\sqrt{9.10}\right).\sqrt{\dfrac{\left(\sqrt{5}\right)^2-2\sqrt{5}.\sqrt{3}+\left(\sqrt{3}\right)^2}{2}}\)
\(=\left(4\sqrt{10}-4\sqrt{6}+5\sqrt{6}-3\sqrt{10}\right).\sqrt{\dfrac{\left(\sqrt{5}-\sqrt{3}\right)^2}{2}}\)
\(=\left(\sqrt{10}+\sqrt{6}\right).\dfrac{\left|\sqrt{5}-\sqrt{3}\right|}{\sqrt{2}}=\sqrt{2}.\left(\sqrt{5}+\sqrt{3}\right).\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}\)
\(=\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)=2\)
a) Ta có: \(\left(4\sqrt{2}+\sqrt{30}\right)\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{4-\sqrt{15}}\)
\(=\sqrt{8-2\sqrt{15}}\cdot\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\left(\sqrt{5}-\sqrt{3}\right)^2\cdot\left(4+\sqrt{15}\right)\)
\(=\left(8-2\sqrt{15}\right)\left(4+\sqrt{15}\right)\)
\(=32+8\sqrt{15}-8\sqrt{15}-30\)
=2
\(\left(a+b\right)^3-\left(a-b\right)^3\)
\(=a^3+3a^2b+3ab^2+b^3-\left(a^3-3a^2b+3ab^2-b^3\right)\)
\(=a^3+3a^2b+3ab^2+b^3-a^3+3a^2b-3ab^2+b^3\)
\(=6a^2b+2b^3\)
\(=2b\left(3a^2+b^2\right)\)
a/\(\left(a+b\right)^3-\left(a-b\right)^3\)
\(=\left(a^3+3a^2b+3ab^2+b^3\right)-\left(a^3-3a^2b+3ab^2-b^3\right)\)\(=a^3+3a^2b+3ab^2+b^3-a^3+3a^2b-3ab^2+b^2\)
\(=6ab^2+2b^3\)(rút gọn hết)
b/\(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3-3xy\left(x-y\right)+z^3-3xyz\)
\(=\left[\left(x+y\right)^3+z^3\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)^3-3z\left(x+y\right)\left(x+y+z\right)-3xy\left(x-y-z\right)\)
\(=\left(x+y+z\right)\left[\left(x+y+z\right)^2-3z\left(x+y\right)-3xy\right]\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2+2xy-2xz+2xz+2xy-3xz-3yz-3xy\right).\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)
Hok tốt
\(\left(3x^2-x-1\right)\left(3x^2+x-1\right)\)
\(=\left(3x^2-1\right)^2-x^2\)
\(=9x^4-6x^2+1-x^2\)
\(=9x^4-7x^2+1\)
\(\left(2x+1\right)^2-\left(x-1\right)^2=\left(2x+1-x+1\right)\left(2x+1+x-1\right)=\left(x+2\right)3x\)
TL:
\(\left(2x+1\right)^2-\left(x-1\right)^2\)
\(=\left(2x+1+x-1\right)\left(2x+1-x+1\right)\)
\(=3x.\left(x+2\right)\)
\(\left(a-b\right)^2-c^2\)
\(=\left(a-b+c\right)\left(a-b-c\right)\)
Hằng đẳng thức số 3 : \(a^2-b^2=\left(a+b\right)\left(a-b\right)\)
TL:
\(\left(a-b\right)^2-c^2\)
\(\left(a-b+c\right)\left(a-b-c\right)\)
Dùng HĐT 3
a) \(12\left(2x-5\right)^2-3\left(1+4x\right)\left(4x-1\right)\)
\(=12\left[\left(2x\right)^2-2.2x.5+5^2\right]-3\left(4x+1\right)\left(4x-1\right)\)
\(=12\left(4x^2-20x+25\right)-3\left[\left(4x\right)^2-1\right]\)
\(=48x^2-240x+300-3\left(16x^2-1\right)\)
\(=48x^2-240x+300-48x^2+3\)
\(=-240x+303\)
( 3 - a )2 = 32 - 2 . 3 a + a2
= 9 - 6a + a2
= 9 - a.(6-a)