Tìm số tự nhiên n để 3n + 7 là bội của n +1 ?
Giúp mình giải với nhé !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\dfrac{3n-2+3}{3n-2}=1+\dfrac{3}{3n-2}\)
C max khi 3n-2=1
=>3n=3
=>n=1
a) n + 7 = n + 2 + 5 chia hết cho n + 2
=> 5 chia hết cho n + 2 thì n+7 chia hết cho n+2
=> n+2 thuộc tập cộng trừ 1, cộng trừ 5
kẻ bảng => n = -1; -3; 3; -7
b) n+1 là bội của n-5
=> n+1 chia hết cho n-5
=> n-5 + 6 chia hết cho n-5
=> Để n+1 chia hết cho n-5 thì 6 chia hết cho n-5
=> n-5 thuộc tập cộng trừ 1; 2; 3; 6
kẻ bảng => n = 6; 4; 7; 3; 8; 2; 11; -1
a)Ta có: (n+7)\(⋮\)(n+2)
\(\Rightarrow\) (n+2+5)\(⋮\)(n+2)
Mà: (n+2)\(⋮\) (n+2)
\(\Rightarrow\) 5\(⋮\)(n+2)
\(\Rightarrow\) n+2\(\in\) Ư(5)={1;-1;5;-5}
\(\Rightarrow\) n\(\in\){-1;-3;3;-7}
a) bn tự lm
b) n + 2 chia hết cho n2 + 1
=> n.(n + 2) chia hết cho n2 + 1
=> n2 + 2n chia hết cho n2 + 1
=> n2 + 1 + 2n - 1 chia hết cho n2 + 1
Do n2 + 1 chia hết cho n2 + 1 => 2n - 1 chia hết cho n2 + 1 (1)
Lại có: n + 2 chia hết cho n2 + 1 (theo đề bài)
=> 2.(n + 2) chia hết cho n2 + 1
=> 2n + 4 chia hết cho n2 + 1 (2)
Từ (1) và (2) => (2n + 4) - (2n - 1) chia hết cho n2 + 1
=> 2n + 4 - 2n + 1 chia hết cho n2 + 1
=> 5 chia hết cho n2 + 1
Mà \(n\in N\) nên \(n^2+1\ge1\)
\(\Rightarrow n^2+1\in\left\{1;5\right\}\)
\(\Rightarrow n^2\in\left\{0;4\right\}\)
\(\Rightarrow n\in\left\{0;2\right\}\)
Thử lại ta thấy trường hợp n = 2 không thỏa mãn
Vậy n = 0
c) bn tự lm
3n+14 là bội của 3n-2
=>\(3n+14⋮3n-2\)
=>\(3n-2+16⋮3n-2\)
=>\(16⋮3n-2\)
mà 3n-2>=-2 với mọi số tự nhiên n
nên \(3n-2\in\left\{-2;-1;1;2;4;8;16\right\}\)
=>\(3n\in\left\{0;1;3;4;6;10;18\right\}\)
=>\(n\in\left\{0;\dfrac{1}{3};1;\dfrac{4}{3};2;\dfrac{10}{3};6\right\}\)
mà n là số tự nhiên
nên \(n\in\left\{0;1;2;6\right\}\)
Để C nguyên thì 3n-2+3 chia hết cho 3n-2
=>\(3n-2\in\left\{1;-1;3;-3\right\}\)
mà n là số tự nhiên
nên \(n\in\left\{1\right\}\)
Theo bài ra ta có : \(\frac{3n+7}{n+1}=\frac{3n+3}{n+1}+\frac{4}{n+1}=3+\frac{4}{n+1}\)
3n+7 thuộc B(n+1)<=>\(\frac{3n+7}{n+1}\)là số tự nhiên<=>\(\frac{4}{n+1}\)là số tự nhiên<=>n+1 thuộc Ư(4)={-4;-2;-1;1;2;4}
Tiếp thì bn tự thay n+1 vào là ra
3n +7 là bội của n+1
suy ra 3n+7 chia hết cho n+1
suy ra 3(n+1)+4 chia hết cho n+1
suy ra 4 chia hết cho n+1
suy ra n+1 thuộc Ư(10)=(1,2,4)
suy ra n thuộc (0,1,3)