Chứng tỏ rằng 7^1+7^2+7^3+7^4+7^5+7^6 chia hết cho 8
nhanh nhé chiều mik đi học rùi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. 5x+27 là bội của x+1
=> 5x+27 chia hết cho x+1
=> 5(x+1)+22 chia hết cho x+1
Mà 5(x+1) chia hết cho x+1
=> 22 chia hết cho x+1
=> x+1 thuộc Ư(22)
Tiếp theo bạn tự làm nhé
\(M=7^1+7^2+7^3+7^4+7^5+7^6\)
\(\Rightarrow M=\left(7^1+7^2\right)+\left(7^3+7^4\right)+\left(7^5+7^6\right)\)
\(\Rightarrow M=7.\left(1+7\right)+7^3.\left(1+7\right)+7^5.\left(1+7\right)\)
\(\Rightarrow M=7.8+7^3.8+7^5.8\)
\(\Rightarrow M=8.\left(7+7^3+7^5\right)⋮8\left(ĐPCM\right)\)
=7(7^0+7^1+7^2+7^3+7^4+7^5)
=7*19608
mà 19608 chia hết cho 8
Suy ra: 7*19608chia hết cho 8
Suy ra: 7^1+7^2+7^3+7^4+7^5+7^6 chia hết cho 8
71+72+73+74+75+76
=7.(7+1) + \(7^3.\left(1+7\right)\)+ \(7^5.\left(1+7\right)\)
=\(7.8+7^3.8+7^5.8\)
=\(8.\left(7+7^3+7^5\right)\)
vì 8 \(⋮\)8 nên \(8.\left(7+7^3+7^5\right)⋮8\)
nên \(7^1+7^2+7^3+7^4+7^5+7^6\)chia hết cho 8
71+72+73+74+75+76
=(71+72) + (73+74) + (75+76)
=7(7+1) + 73(1+7) + 75(1+7)
=7x8 + 73x8 + 75x8
(vì mỗi số hạng chia hết cho 8)
a, 11 + 112 + 113 + ... + 117 + 118
= (11 + 112) + (113 + 114) + ... + (117 + 118)
= 11(1 + 11) + 113(1 + 11) + ... + 117(1 + 11)
= 11.12 + 113.12 + .... + 117.12
= 12(11 + 113 + ... + 117) chia hết cho 12
b, 7 + 72 + 73 + 74
= (7 + 73) + (72 + 74)
= 7(1 + 72) + 72(1 + 72)
= 7.50 + 72.50
= 50(7 + 72) chia hết cho 50
c, 3 + 32 + 33 + 34 + 35 + 36
= (3 + 32 + 33) + (34 + 35 + 36)
= 3(1 + 3 + 32) + 34(1 + 3 + 32)
= 3.13 + 34.13
= 13(3 + 34) chia hết cho 13
\(7+7^2+7^3+7^4+7^5+7^6\)
\(=\left(7+7^2\right)+\left(7^3+7^4\right)+\left(7^5+7^6\right)\)
\(=7\left(1+7\right)+7^3\left(1+7\right)+7^5\left(1+7\right)\)
\(=8\left(7+7^3+7^5\right)\)\(⋮8\)(điều phải chứng minh)
cảm ơn Khải nhé