K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2017

A)Tứ giác AKBD có: 

AI=IB=AB/2

DI=IK=DK/2(GT)

AB và DK cắt nhau tại I

=> Tứ giác AKBD là hình bình hành( DHNB)

Hình bình hành AKBD CÓ :góc AKB=90độ

=>Hình bình hành AKBD là hình chữ nhật( DHNB) 

20 tháng 8 2019

bạn ơi,  bạn có làm dược câu c ko?

AH
Akai Haruma
Giáo viên
31 tháng 12 2020

Lời giải:a) 

$M$ là trung điểm $AB$. $E$ đối xứng với $D$ qua $M$ nên $M$ là trung điểm $DE$. Như vậy, xét tứ giác $ADBE$ có 2 đường chéo $AB$ và $ED$ cắt nhau tại trung điểm $M$ của chính nó nên $ADBE$ là hình bình hành. Mà $\widehat{D}=90^0$ nên $ADBE$ là hình chữ nhật.

b) 

Vì $ADBE$ là hình chữ nhật nên $AE=BD$ và $AE\parallel BD$.

$ABC$ cân tại $A$ nên đường cao $AD$ đồng thời là đường trung tuyến. Do đó $BD=DC$

Suy ra $AE\parallel DC$ và $AE=DC$. Do đó $ACDE$ là hình bình hành.

c) 

Ta thấy: $MD=\frac{1}{2}AC$ (tính chất đường trung bình)

$MB=\frac{1}{2}AB=\frac{1}{2}AC$

$\Rightarrow MB=MD\Rightarrow \widehat{MBD}=\widehat{MDB}$

$\Rightarrow 180^0-\widehat{MBD}=180^0-\widehat{MDB}$

$\Leftrightarrow \widehat{KBC}=\widehat{MDC}$ 

Xét tam giác $KBC$ và $MDC$ có:

$\widehat{KBC}=\widehat{MDC}$ (cmt)

$\frac{KB}{BC}=\frac{AB}{BC}=\frac{\frac{AB}{2}}{\frac{BC}{2}}=\frac{MD}{DC}$

$\Rightarrow \triangle KBC\sim \triangle MDC$ (c.g.c)

$\Rightarrow \frac{KC}{MC}=\frac{BC}{DC}=2$

$\Rightarrow KC=2MC$ (đpcm)

 

AH
Akai Haruma
Giáo viên
31 tháng 12 2020

Hình vẽ:

undefined

20 tháng 12 2022

a: Xét tứ giác ADCH có

M là trung điểm chung của AC và HD

góc AHC=90 độ

Do đó: ADCH là hình chữ nhật

b: Xét tứ giác ADHE có

AD//HE

AD=HE

Do đó: ADHE là hình bình hành

 

a: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

góc CAB=90 độ

Do đó: ABDC là hình chữ nhật

12 tháng 12 2021

a) Xét tứ giác AHCE có:

+ D là trung điểm của AC (gt).

+ D là trung điểm của HE (do E đối xứng với H qua D).

=> Tứ giác AHCE là hình bình hành (dhnb).

Mà ^AHC = 90o (AH vuông góc BC).

=> Tứ giác AHCE là hình chữ nhật (dhnb).

Xét tứ giác AHBN có:

+ M là trung điểm của AB (gt).

+ M là trung điểm của  HN (do N đối xứng với H qua M).

=> Tứ giác AHBN là hình bình hành (dhnb).

Mà ^AHB = 90o (AH vuông góc BC).

=> Tứ giác AHBN là hình chữ nhật (dhnb).

b) Tứ giác AHCE là hình chữ nhật (cmt).

=> AE // HC (Tính chất hình chữ nhật).

Xét tứ giác AEHI có:

+ AE // IH (do AE // HC).

+ AI // EH (gt).

=> Tứ giác AEHI là hình bình hành (dhnb).

c) Ta có: AE = IH (Tứ giác AEHI là hình bình hành).

Mà AE = HC (Tứ giác AHCE là hình chữ nhật).

=> IH = HC.

=> H là trung điểm IC.

Xét tứ giác CAIK có:

+ H là trung điểm của IC (cmt).

+ H là trung điểm của AK (AH = HK).

=> Tứ giác CAIK là hình bình hành (dhnb).

Mà AK vuông góc IC (do AH vuông góc BC).

=> Tứ giác CAIK là hình thoi (dhnb).

 

25 tháng 12 2021

a,Xét tứ giác ABDC có:

     D đối xứng với A qua M nên :

        DA=DC(1)

      M là trung điểm BC nên:

        BM=MC(2)

Từ (1)và (2) suy ra:

 tứ giác ABDC là hình chữ nhật(đpcm)

b, vì ABDC là hình chữ nhật nên:

AB=DC và AB//DC 

mà DC=FC và F trên tia DC 

=>AB=FC và AB//FC

 vậy tứ giác ABCF là hình bình hành(đpcm)