cho tam giác ABC vuông ở A, điểm M nằm giữa B và C. Gọi D;E theo thứ tự là hình chiếu của M trên AC;AB.tìm vị trí của M để DE có độ dài nhỏ nhất.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
A B C D E M N I
Haizzz học lâu quá nên quên hết rồi ! sorry
đừng xem chùa T_T
ủng hộ tôi bằng cách liike ik mờ
a, Vì △ABC cân tại A => AB = AC và ABC = ACB
Xét △ABD và △ACE
Có: AB = AC (cmt)
ABD = ACE (cmt)
BD = CE(gt)
=> △ABD = △ACE (c.g.c)
b, Xét △AHD vuông tại H và △AIE vuông tại I
Có: AD = AE (△ABD = △ACE)
HAD = IAE (△ABD = △ACE)
=> △AHD = △AIE (ch-gn)
=> HD = IE (2 cạnh tương ứng)
c, Xét △AHI có: AH = AI (△AHD = △AIE) => △AHI cân tại A => AHI = (180o - HAI) : 2 (1)
Vì △ABC cân tại A => ABC = (180o - BAC) : 2 (2)
Từ (1) và (2) => AHI = ABC
Mà 2 góc này nằm ở vị trí đồng vị
=> HI // BC (dhnb)
d, Gọi { O } = HD
EAMD hình chữ nhật( có 3 góc vuông )
=> ED = AM
AM ngắn nhất vuông khi AM vuông góc với BC
=> ED ngắn nhất khi M là chân đường vuông góc hạ từ A xuống BC
EAMD hình chữ nhật( có 3 góc vuông )
=> ED = AM
AM ngắn nhất vuông khi AM vuông góc với BC
=> ED ngắn nhất khi M là chân đường vuông góc hạ từ A xuống BC