cho tam giác ABC có bán kính đường tròn ngoại tiếp bằng 1,thỏa sinA/mA+sinB/mB+sinC/mC=căn 3.chứng minh tam giác ABC đều
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
10 tháng 4 2020
Bài toán phụ: Cho tam giác ABC có \(\widehat{A}=120^o\). Khi đó BC2=AB2+AC2+AB.AC
Chứng minh: Gọi H là hình chiếu của C trên AB
\(AH=\frac{1}{2}AC;CH=\frac{\sqrt{3}}{2}AC\left(1\right)\)
Theo định lý Pytago, ta có: BC2=BH2+CH2 (2)
Từ (1)(2) => BC2=(AB+AH)2+CH2=\(\left(AB+\frac{1}{2}AC\right)^2+\left(\frac{\sqrt{3}}{2}AC\right)^2\)
\(=AB^2+AB\cdot AC+\frac{1}{4}AC^2+\frac{3}{4}AC^2=AB^2+AC^2+AB\cdot AC\)
Không mất tính tổng quát giả sử M thuộc cung \(\widebat{BC}\) (không chứa A) của (O)
Chứng minh được MA=MB+MC
=> MA2=MB2+MC2+2.MB.MC
=> MA2+MB2+MC2=2(MB2+MC2+MB.MC)(3)
Theo BĐ1 ta có: MB2+MC2+MB.MC=BC2
=> MB2+MC2+MB.MC=3R2
Từ (1) (2) => MA2+MB2+MC2=6R2