K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2017

\(A=\frac{2\sqrt{3-\sqrt{3+\sqrt{13+\sqrt{48}}}}}{\sqrt{6}-\sqrt{2}}=\frac{2\sqrt{3-\sqrt{3+\sqrt{12+2\sqrt{12}+1}}}}{\sqrt{6}-\sqrt{2}}\)

\(=\frac{2\sqrt{3-\sqrt{3+\sqrt{\left(\sqrt{12}+1\right)^2}}}}{\sqrt{6}-\sqrt{2}}=\frac{2\sqrt{3-\sqrt{3+\sqrt{12}+1}}}{\sqrt{6}-\sqrt{2}}\)

\(=\frac{2\sqrt{3-\sqrt{3+2\sqrt{3}+1}}}{\sqrt{6}-\sqrt{2}}=\frac{2\sqrt{3-\sqrt{\left(\sqrt{3}+1\right)^2}}}{\sqrt{6}-\sqrt{2}}=\frac{2\sqrt{3-\sqrt{3}-1}}{\sqrt{6}-\sqrt{2}}\)

\(=\frac{2\sqrt{2-\sqrt{3}}}{\sqrt{6}-\sqrt{2}}=\frac{\sqrt{8-\sqrt{48}}}{\sqrt{6}-\sqrt{2}}=\frac{\sqrt{6-2\sqrt{6.2}+2}}{\sqrt{6}-\sqrt{2}}\)

\(=\frac{\sqrt{\left(\sqrt{6}-\sqrt{2}\right)^2}}{\sqrt{6}-\sqrt{2}}=\frac{\sqrt{6}-\sqrt{2}}{\sqrt{6}-\sqrt{2}}=1\)

\(=\dfrac{2\cdot\sqrt{3+\sqrt{5}-2\sqrt{3}-1}}{\sqrt{6}+\sqrt{2}}=\dfrac{2\cdot\sqrt{2-2\sqrt{3}+\sqrt{5}}}{\sqrt{6}+\sqrt{2}}\)

NV
8 tháng 10 2019

\(=\frac{2\sqrt{3-\sqrt{3+\sqrt{\left(2\sqrt{3}+1\right)^2}}}}{\sqrt{6}-\sqrt{2}}=\frac{2\sqrt{3-\sqrt{4+2\sqrt{3}}}}{\sqrt{6}-\sqrt{2}}\)

\(=\frac{2\sqrt{3-\sqrt{\left(\sqrt{3}+1\right)^2}}}{\sqrt{6}-\sqrt{2}}=\frac{2\sqrt{2-\sqrt{3}}}{\sqrt{6}-\sqrt{2}}=\frac{\sqrt{2}.\sqrt{4-2\sqrt{3}}}{\sqrt{2}\left(\sqrt{3}-1\right)}\)

\(=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{3}-1}=1\)

20 tháng 7 2017

Ta có C=\(\frac{2\sqrt{3-\sqrt{3+\sqrt{13+4\sqrt{3}}}}}{\sqrt{6}-\sqrt{2}}\)

=\(\frac{2\sqrt{3-\sqrt{3+\sqrt{1+2\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2}}}}{\sqrt{6}-\sqrt{2}}\)

=\(\frac{2\sqrt{3-\sqrt{3+\sqrt{\left(1+2\sqrt{3}\right)}^2}}}{\sqrt{6}-\sqrt{2}}\)

=\(\frac{2\sqrt{3-\sqrt{4+2\sqrt{3}}}}{\sqrt{6}-\sqrt{2}}\)=\(\frac{2\sqrt{3-\sqrt{\left(1+\sqrt{3}\right)}^2}}{\sqrt{6}-\sqrt{2}}\)=\(\frac{2\sqrt{2-\sqrt{3}}}{\sqrt{2}\cdot\left(\sqrt{3}-1\right)}\)=1

25 tháng 6 2017

a) \(\dfrac{1}{\sqrt{3}}+\dfrac{1}{3\sqrt{2}}+\dfrac{1}{\sqrt{3}}\sqrt{\dfrac{5}{12}-\dfrac{1}{\sqrt{6}}}\)

\(=\dfrac{\sqrt{3}}{3}+\dfrac{\sqrt{2}}{6}+\dfrac{1}{\sqrt{3}}\sqrt{\dfrac{5}{12}-\dfrac{\sqrt{6}}{6}}\)

\(=\dfrac{\sqrt{3}}{3}+\dfrac{\sqrt{2}}{6}+\dfrac{\sqrt{\dfrac{5}{12}-\dfrac{\sqrt{6}}{6}}}{\sqrt{3}}\)

\(=\dfrac{\sqrt{3}}{3}+\dfrac{\sqrt{2}}{6}+\dfrac{\sqrt{\left(\dfrac{5}{12}-\dfrac{\sqrt{6}}{6}\right)\cdot3}}{3}\)

\(=\dfrac{\sqrt{3}}{3}+\dfrac{\sqrt{2}}{6}+\dfrac{\sqrt{\dfrac{5}{4}-\dfrac{\sqrt{6}}{2}}}{3}\)

\(=\dfrac{\sqrt{3}+\sqrt{\dfrac{5}{4}-\dfrac{\sqrt{6}}{2}}}{3}+\dfrac{\sqrt{2}}{6}\)

b) \(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}=...\)

c) \(\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}=...\)

d) \(\dfrac{2\sqrt{3-\sqrt{3+\sqrt{13+\sqrt{48}}}}}{\sqrt{6}-\sqrt{2}}\)

\(=\dfrac{2\sqrt{3-\sqrt{3+\sqrt{13+4\sqrt{3}}}}}{\sqrt{6}-\sqrt{2}}\)

\(=\dfrac{2\sqrt{3-\sqrt{3+\sqrt{\left(1+2\sqrt{3}\right)^2}}}}{\sqrt{6}-\sqrt{2}}\)

\(=\dfrac{2\sqrt{3-\sqrt{3+1+2\sqrt{3}}}}{\sqrt{6}-\sqrt{2}}\)

\(=\dfrac{2\sqrt{3-\sqrt{3+2\sqrt{3}+1}}}{\sqrt{6}-\sqrt{2}}\)

\(=\dfrac{2\sqrt{3-\sqrt{\left(\sqrt{3}+1\right)^2}}}{\sqrt{6}-\sqrt{2}}\)

\(=\dfrac{2\sqrt{3-\left(\sqrt{3}+1\right)}}{\sqrt{6}-\sqrt{2}}\)

\(=\dfrac{2\sqrt{3-\left(\sqrt{3}+1\right)}\cdot\left(\sqrt{6}+\sqrt{2}\right)}{4}\)

\(=\dfrac{\sqrt{3\left(\sqrt{3}+1\right)}\cdot\left(\sqrt{6}+\sqrt{2}\right)}{2}\)

\(=\dfrac{\sqrt{3-\sqrt{3}-1}\sqrt{\left(\sqrt{6}+\sqrt{2}\right)^2}}{2}\)

\(=\dfrac{\sqrt{\left(3-\sqrt{3}-1\right)\cdot\left(\sqrt{6}+\sqrt{2}\right)^2}}{2}\)

\(=\dfrac{\sqrt{\left(2-\sqrt{3}\right)\cdot\left(6+2\sqrt{12}+2\right)}}{2}\)

\(=\dfrac{\sqrt{\left(2-\sqrt{3}\right)\cdot\left(6+4\sqrt{3}+2\right)}}{2}\)

\(=\dfrac{\sqrt{\left(2-\sqrt{3}\right)\cdot\left(8+4\sqrt{3}\right)}}{2}\)

\(=\dfrac{\sqrt{\left(2-\sqrt{3}\right)\cdot4\left(2+\sqrt{3}\right)}}{2}\)

\(=\dfrac{\sqrt{\left(4-3\right)\cdot4}}{2}\)

\(=\dfrac{\sqrt{1\cdot4}}{2}\)

\(=\dfrac{2}{2}\)

\(=1\)

Ta có :

A= \(\dfrac{2\cdot\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)

Đặt B=\(2\cdot\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}\)

Ta có B=\(2\cdot\sqrt{3+\sqrt{5-\sqrt{12+2\cdot\sqrt{12}+1}}}\)

\(2\cdot\sqrt{3+\sqrt{5-\sqrt{12}-1}}\\ =2\sqrt{3+\sqrt{4-\sqrt{12}}}\\ =2\cdot\sqrt{3+\sqrt{3-2\cdot\sqrt{3}+1}}\\ =2\cdot\sqrt{3+\sqrt{3}-1}\\ =2\cdot\sqrt{2+\sqrt{3}}\)

Thay B vào A, ta cũng có:

A=\(\dfrac{2\cdot\sqrt{2+\sqrt{3}}}{\sqrt{6}+\sqrt{2}}\\ =\dfrac{2\cdot\sqrt{2+\sqrt{3}}}{\sqrt{2\cdot\left(\sqrt{3}+1\right)}}\\ =\dfrac{\sqrt{2}\cdot\sqrt{2+\sqrt{3}}}{\sqrt{3}+1}\\ =\dfrac{\sqrt{4+2\sqrt{3}}}{\sqrt{3}+1}=\dfrac{\sqrt{3+2\sqrt{3}+1}}{\sqrt{3}+1}=1\)

Vậy A thuộc Z