K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2016

A B C D E 1 2

a) Vì BC=2 AB

Mà E là trung điểm của BC

=> AB= BE = EC

Xét ΔABD và ΔEBD có:

AB=BE (cmt)

góc A1 = góc A2(gt)

BD: cạnh chung

=> ΔABD=ΔEBD (c.g.c)

=> góc ADB= góc EDB

=> DB là tia pg của góc ADE

b) VÌ ΔABD=ΔEBD( cmt)

=> góc BAD= góc BED=90

Mà : góc DEB + góc DEC=180

=> góc DEB= góc DEC

Xét ΔDEB và ΔDEC có:

DE:cạnh chung

góc DEB = góc DEC(cmt)

BE=CE(gt)

=> ΔDEB=ΔDEC(c.g.c)

=> BD=DC

c) Vì ΔDEB=ΔDEC(cmt)

=> góc B2= góc C

Mà: góc B+ góc C=90

<=> 2 B2+ góc C=90

<=> 3 góc B2=90

<=> B2=30

Vậy: góc C=góc B2=30; góc B= 2.B2=2.30=60

 

12 tháng 12 2016

thanks bạn nha

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:a) BD là đường trung trực của AE.b) AD<DCc) Ba điểm E, D, F thẳng hàngBài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.a) Tính BCb) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCBc) Trên tia đối của tia DB lấy điểm E sao cho...
Đọc tiếp

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:

a) BD là đường trung trực của AE.

b) AD<DC

c) Ba điểm E, D, F thẳng hàng

Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.

a) Tính BC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông

d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF

Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:

a) Tam giác ANC là tam giác cân

b) NC vuông góc BC

c) Tam giác AEC là tam giác cân

d) So sánh BC và NE

Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:

a) Góc ACE= góc ABD

b) Tam giác ABD = tam giác ECA

c) Tam giác AED là tam giác vuông cân

0
22 tháng 8 2016

Do BC=2.AB mà E trung điểm BC=>BE=AB

XÉT tam giác DBA và tam giác DBE 

BDchung

gócABD=gócEBD(BD phân giác)

BE=AD(cmt)

=>TAM GIÁC BDA=TAM GIÁC DBE

29 tháng 1 2019

Để đó,tối xem rồi giải cho.

29 tháng 1 2019

Hình như bài này có câu sai đề.

A B C D E D K

a)Xét tam giác AEB vuông tại E.

Theo định lí Pytago,ta có: \(BE^2+EA^2=AB^2\Rightarrow AB^2>BE^2\Rightarrow AB>BE\)

Vậy làm sao mà chứng minh AB = BE được?

Từ đó dẫn đến nhưng câu sau cũng sai.

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

b: Xét ΔACB có AD là phân giác

nên BD/AB=CD/AC
=>BD/3=CD/4

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{10}{7}\)

Do đó:BD=30/7cm; CD=40/7cm

a) Ta có: \(BC^2=5^2=25\)

\(AB^2+AC^2=3^2+4^2=25\)

Do đó: \(BC^2=AB^2+AC^2\)(=25)

Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)

nên ΔABC vuông tại A(Định lí Pytago đảo)