Đk: \(x\ge\frac{2}{3}\)
Ta có: \(x^2+1^2\ge2x=\left(2x-1\right)+1=\left(\sqrt{2x-1}\right)^2+1^2\ge2\sqrt{2x-1}\left(1\right)\)
Lại có: \(\left(\sqrt{x}+\sqrt{3x-2}\right)^2\le2\left(x+3x-2\right)=2\left(4x-2\right)=4\left(2x-1\right)\)
suy ra: \(\sqrt{x}+\sqrt{3x-2}\le2\sqrt{2x-1}\left(2\right)\)
Từ (1);(2) suy ra \(x^2+1\ge\sqrt{x}+\sqrt{3x-2}\)
Để dấu"=" xảy ra theo đề bài thì x=1