K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 5 2021

Tích số trên các thẻ của Gabriel là 63

mà 63 = 7 x 9 x 1 = 7 x 3 x 3

=> 3 số Gabriel bốc được là  7,1 và 9 vì không thể có 2 thẻ có số 3

Tích trên các thẻ của Hillary là 48

mà 48 = 2 x 3 x 8 =  4 x 6 x 2                                                  

=> 3 số của Hillary là 2,4,6 hoặc là 2;3;8 

Khi là 2,4,6 => 3 số còn lại là 3,5,7 mà 3 + 5 + 7 = 15 (tm)  

Khi là 2,3,8 => 3 só còn lại 4,5,6 mà 4 + 5 + 6 = 15 (tm)

24 tháng 5 2021

Tích số trên các thẻ của Gabriel là 63

mà 63 = 7 x 9 x 1 = 7 x 3 x 3

=> 3 số Gabriel bốc được là  7,1 và 9 vì không thể có 2 thẻ có số 3

Tích trên các thẻ của Hillary là 48

mà 48 = 2 x 3 x 8 =  4 x 6 x 2                                                  

=> 3 số của Hillary là 2,4,6 hoặc là 2;3;8 

Khi là 2,4,6 => 3 số còn lại là 3,5,7 mà 3 + 5 + 7 = 15 (tm)  

Khi là 2,3,8 => 3 só còn lại 4,5,6 mà 4 + 5 + 6 = 15 (tm)

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

Do các tấm thẻ giống nhau, nên lấy 3 tấm từ 10 tấm không quan tâm thứ tự có \(C_{10}^3 = 120\)cách, suy ra \(n\left( \Omega  \right) = 120\)

Gọi A là biến cố “Tích các số ghi trên ba thẻ đó là số chẵn”

Để tích các số trên thẻ là số chẵn thì ít nhất có 1 thẻ là số chẵn

Để chọn ra 3 thẻ thuận lợi cho biến cố A ta có 3 khả năng

+) Khả năng 1: 3 thẻ chọn ra có 1 thẻ có số chẵn và 2 thẻ có số lẻ có \(5.C_5^2 = 50\) khả năng

+) Khả năng 2: 3 thẻ chọn ra có 2 thẻ có số chẵn và 1 thẻ có số lẻ có \(C_5^2.5 = 50\) khả năng

+) Khả năng 3: 3 thẻ chọn ra có đều là có số chắn có \(C_5^3 = 10\) khả năng

Suy ra \(n\left( A \right) = 50 + 50 + 10 = 110\)

Vậy xác suất của biến cố A là:   \(P(A) = \frac{{110}}{{120}} = \frac{{11}}{{12}}\)

11 tháng 9 2023

đáp án ....... ...¿.¿¿¿

5 tháng 3 2018

Đáp án A

Rút ngẫu nhiên 2 thẻ trong 9 thẻ có  C 9 2 cách  ⇒ n ( Ω ) = C 9 2

Gọi X là biến cố “hai thẻ rút được có tích 2 số ghi trên 2 thẻ là số lẻ”

Khi đó 2 thẻ rút ra đều phải đưuọc đánh số lẻ => có  C 5 2 cách =>  n ( X ) = C 5 2 .

Vậy xác suất cần tính là  P = n ( X ) n ( Ω ) = C 5 2 C 9 2 = 5 18 .

6 tháng 5 2019

Đáp án A

Rút ngẫu nhiên 2 thẻ trong 9 thẻ có C 9 2  cách ⇒ n Ω = C 9 2  

Gọi X là biến cố “hai thẻ rút được có tích 2 số ghi trên 2 thẻ là số lẻ”

Khi đó 2 thẻ rút ra đều phải đưuọc đánh số lẻ ⇒ có C 5 2  cách ⇒ n X = C 5 2  

Vậy xác suất cần tính là P = n X n Ω = C 5 2 C 9 2 = 5 18  

4 tháng 11 2023

Có 4 cách chọn thẻ thứ nhất. có 3 cách chọn thẻ thứ hai số cách chọn 2 tấm thẻ khác nhau từ 4 tấm thẻ là:

                 4 x 3 = 12 (cách)

Theo cách tính trên mỗi cách đã được tính hai lần. Vậy số cách lấy được 2 tấm thẻ từ bốn tấm thẻ đã cho là:

              12 : 2 = 6 (cách)

Có 2 cách chọn tấm thẻ thứ nhất, có 3 cách chọn thẻ thứ hai. Vậy số cách chọn hai tấm thẻ để tích các số trên hai thẻ rút ra là số chẵn" là:

                 2 x 3 = 6 (cách)

Theo cách tính trên mỗi cách đã được tính hai lần.

Vậy số cách để rút hai tấm thẻ mà tích các số trên hai thẻ là số chẵn là: 

                  6 : 2  = 3 (cách)

Xác suất của biến cố "tích các số trên hai thẻ rút ra là số chẵn" là:

                  3 : 6 = \(\dfrac{1}{2}\)

Kết luận:...

4 tháng 11 2023

Cách thứ hai: Số cách chọn 2 thẻ bất kì (có kể thứ tự) là \(4.3=12\) cách. Như vậy, số cách chọn 2 thẻ không tính thứ tự là \(\dfrac{12}{2}=6\) cách.

Ta xét biến cố A: "Tích 2 số trên 2 thẻ rút ra là số chẵn." Biến cố đối của nó là \(\overline{A}\):  "Tích 2 số trên 2 thẻ rút ra là số lẻ." Biến cố này tương đương với biến cố: "Cả 2 số trên 2 thẻ rút được là số lẻ."

 Ta thấy trường hợp duy nhất thỏa mãn là rút được 2 tấm thẻ số 5 và 7. \(\Rightarrow P\left(\overline{A}\right)=\dfrac{1}{6}\) \(\Rightarrow P\left(A\right)=\dfrac{5}{6}\)

 Vậy xác suất của biến cố: "Tích các số trên 2 thẻ rút ra là số chẵn." là \(\dfrac{5}{6}\).