Điều kiện để số nguyên m để m+2/-5 là số hữu tỉ dương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Để 2 số hữu tỉ đều là dương :
\(\dfrac{m+2}{5}>0\Rightarrow m>-2\left(1\right)\)
\(\dfrac{m-5}{-6}>0\Rightarrow\dfrac{5-m}{6}>0\Rightarrow m< 5\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow-2< m< 5\Rightarrow m\in\left\{-1;0;1;2;3;4\right\}\left(m\in Z\right)\)

Bài 1:
a) Để số hữa tỉ x là dương thì tử số và mẫu số của phân số \(\frac{2m-8}{-2017}\)cùng dấu
Mà -2017 là âm
=> 2m - 8 cũng là âm
=> 2m < 8
=> m < 4
Vậy với m < 4 thì x là số hữa tỉ dương
b) Để số hữa tỉ x là âm thì tử số và mẫu số của phân số \(\frac{2m-8}{-2017}\)khác dấu
Mà -2017 là âm
=> 2m - 8 là dương
=> 2m > 8
=> m > 4
Vậy với m > 4 thì x là số hữa tỉ âm
c) Để số hữa tỉ x không là âm không dương thì tử số của phân số \(\frac{2m-8}{-2017}\)là 0 ( vì số hữa tỉ không âm không dương là 0 )
=> 2m - 8 = 0
=> 2m = 8
=> m = 4
Vậy với m = 4 thì x không âm không dương
Bài 2:
Để số hữu tỉ \(c=\frac{2x-4}{x+3}\) là số nguyên thì: \(2x-4⋮x+3\)
\(\Rightarrow2x+6-4-6⋮x+3\)
\(\Rightarrow\left(2x+6\right)-10⋮x+3\)
\(\Rightarrow10⋮x+3\)( vì \(\left(2x+6\right)⋮x+3\))
\(\Rightarrow x+3\inƯ\left(10\right)=\left\{-10;-5;-2;-1;1;2;5;10\right\}\)
\(\Rightarrow x\in\left\{-13;-8;-5;-4;-2;-1;2;7\right\}\)
Vậy với \(x\in\left\{-13;-8;-5;-4;-2;-1;2;7\right\}\)thì số hữu tỉ C là số nguyên

Mình làm mẫu 2 bài đầu tiên thôi nhé!! 😃
a, Để 3/(x - 1) dương thì 3 và x - 1 cùng dấu
Mà 3 > 0 => x - 1 > 0 => x > 1
b, Để 5/(x - 2) âm thì 5 và x - 2 trái dấu
Mà 5 > 0 => x - 2 < 0 => x < 2
*tk giúp mình nhé!! 😊*
a, \(\frac{3}{x-1}\) là số dương => \(\frac{3}{x-1}>0\) => x - 1 cùng dấu với 3
Vì x - 1 là mẫu số \(\Rightarrow x-1\ne0\) \(\Rightarrow x-1>0\Rightarrow x>0+1\Rightarrow x>1\)
b, \(\frac{5}{x-2}\) là số âm => \(\frac{5}{x-2}< 0\) => x - 2 khác dấu với 5
Vì x - 2 là mẫu số \(\Rightarrow x-2\ne0\Rightarrow x-2< 0\Rightarrow x< 0+2\Rightarrow x< 2\)
c, \(\frac{x-3}{x-5}\) là số dương => \(\frac{x-3}{x-5}>0\) => x - 3 và x - 5 cùng dấu
\(TH1:\hept{\begin{cases}x-3>0\\x-5>0\end{cases}\Rightarrow\hept{\begin{cases}x>0+3\\x>0+5\end{cases}\Rightarrow\hept{\begin{cases}x>3\\x>5\end{cases}\Rightarrow}}x>5}\)
\(TH2:\hept{\begin{cases}x-3< 0\\x-5< 0\end{cases}\Rightarrow}\hept{\begin{cases}x< 0+3\\x< 0+5\end{cases}\Rightarrow\hept{\begin{cases}x< 3\\x< 5\end{cases}\Rightarrow}x< 3}\)
d, \(\frac{x+7}{x+10}\) là số âm => \(\frac{x+7}{x+10}< 0\) => x + 7 và x + 10 khác dấu
\(TH1:\hept{\begin{cases}x+7>0\\x+10< 0\end{cases}\Rightarrow}\hept{\begin{cases}x>0-7\\x< 0-10\end{cases}\Rightarrow}\frac{x>-7}{x< -10}\) ( loại )
\(TH2:\hept{\begin{cases}x+7< 0\\x+10>0\end{cases}\Rightarrow\hept{\begin{cases}x< 0-7\\x>0-10\end{cases}\Rightarrow}\hept{\begin{cases}x< -7\\x>-10\end{cases}\Rightarrow}-10< x< -7}\)

1: Để \(\dfrac{-5}{x-1}< 0\) thì x-1>0
hay x>1
2: Để \(\dfrac{7}{x-6}>0\) thì x-6>0
hay x>6
3: Để \(\dfrac{-3}{x-6}< 0\) thì x-6<0
hay x<6

a: Để \(\dfrac{2}{x-1}< 0\) thì x-1<0
hay x<1
b: Để \(\dfrac{-5}{x-1}< 0\) thì x-1>0
hay x>1
c: Để \(\dfrac{7}{x-6}>0\) thì x-6>0
hay x>6
d: Để \(\dfrac{x+2}{x-6}>0\) thì x-6>0 hoặc x+2<0
=>x>6 hoặc x<-2

- Nếu là số hữu tỉ dương :
\(m+3>0;m-2>0\Rightarrow m>-3;m>2\Rightarrow m>2\)
- Nếu là số hữu tỉ âm :
\(m+3< 0;m-2< 0\Rightarrow m< -3;m< 2\Rightarrow m< -3\)

Bài 11:
Ta có: \(x=\dfrac{-101}{a+7}\) nguyên khi \(-101⋮a+7\)
Vậy: \(a+7\inƯ\left(101\right)\)
\(Ư\left(101\right)=\left\{101;1;-101;-1\right\}\)
\(a+7\in\left\{101;1;-101;-1\right\}\)
\(\Rightarrow a\in\left\{94;-108;-6;-8\right\}\)
Vậy x sẽ nguyên khi \(a\in\left\{94;-108l-6;-8\right\}\)
Bài 12:
Ta có: \(t=\dfrac{3x+8}{x-5}=\dfrac{3x+15-7}{x-5}=\dfrac{3\left(x+5\right)-7}{x-5}=3+\dfrac{7}{x-5}\)
t nguyên khi \(\dfrac{7}{x+5}\) nguyên tức là \(x-5\inƯ\left(7\right)\)
\(Ư\left(7\right)=\left\{-7;7;-1;1\right\}\)
\(\Rightarrow x-5\in\left\{-7;7;-1;1\right\}\)
\(\Rightarrow x\in\left\{12;-2;4;6\right\}\)
Vậy t sẽ nguyên khi \(x\in\left\{12;-2;4;6\right\}\)

a. Điều kiện để M là phân số là: số tận cùng của \(n\ne4;9\)
b.Điều kiênj để M là một số nguyên là:
\(5⋮n+1\) hay \(n+1\in U\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow n=\left\{-2;4;-6\right\}\) ( vì \(n+1\ne0\)
a) Số nguyên n phải có điều kiện sau để M là phân số là:
\(n+1\ne0;5;-5\)
\(n\ne0\)
\(n\ne-1\)
\(n\ne4\)
\(n\ne-6\)
Như vậy, n không thuộc các số nguyên trên và n các tất cả các số nguyên còn lại.
Với điều kiện như thế, M sẽ là phân số.
b) Số nguyên n phải có điều sau để M là số nguyên là:
\(5 ⋮ n+1\) thì M sẽ là số nguyên \(\left(n\inℤ\right)\), hay \(n+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Ta có bảng sau:
\(n+1\) | \(-5\) | \(-1\) | \(1\) | \(5\) |
\(n\) | \(-6\) | \(-2\) | \(0\) | \(4\) |
ĐCĐK | TM | TM | TM | TM |
Vậy \(n=\left\{-6;-2;0;4\right\}\)
Để \(\frac{m+2}{-5}\) là số hữu tỉ dương thì m+2<0
=>m<-2
=>m∈{....;-4;-3}
Đề: Tìm điều kiện để \(\frac{m + 2}{- 5}\) là số hữu tỉ dương, với \(m\) nguyên.
Bước 1. Xác định dấu của mẫu số
Mẫu số = \(- 5 < 0\).
→ Nghĩa là phân số chỉ dương khi tử số \(m + 2\) lớn hơn 0 (tử và mẫu phải trái dấu).
Bước 2. Lập bất phương trình
\(m + 2 > 0 \Rightarrow m > - 2\)
Bước 3. Kết luận với điều kiện nguyên
Vì \(m\) là số nguyên, nên:
\(m \in \mathbb{Z} , \textrm{ }\textrm{ } m \geq - 1\)
Kết quả: Điều kiện là \(m \geq - 1\).