Tìm các cặp số nguyên (x, y) thỏa mãn:
|x + 2| + |x - 1| = 3 - (y + 2)^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta thấy :
\(\left|x+2\right|+\left|x-1\right|=\left|x+2\right|+\left|1-x\right|\ge\left|x+2+1-x\right|=3\)
\(\left(y+2\right)^2\ge0\Rightarrow3-\left(y+2\right)^2\le3\)
\(\Rightarrow VT\ge3\ge VP\)
Để \(VP=VT\Leftrightarrow\hept{\begin{cases}\left|x+2\right|+\left|x-1\right|=3\\3-\left(y+2\right)^2=3\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=-2;-1;0;1\\y=-2\end{cases}}\)
Vậy các cặp (x;y) nguyên là (-2;-2) ; (-1;-2) ; (0;2) ; (1;2)

Nếu \(x< -3\) thì \(x^2+x+3< x^2\) và \(x^2+x+3>\left(x+1\right)^2\), vô lý.
Nếu \(x>2\) thì \(x^2+x+3>x^2\) và \(x^2+x+3< \left(x+1\right)^2\), cũng vô lý.
Do đó \(x\in\left\{-3;-2;-1;0;1;2\right\}\)
Thử từng giá trị, ta thấy \(\left(x;y\right)\in\left\{\left(-3;3\right);\left(-3;-3\right)\right\}\) là các cặp số thỏa ycbt.

Ta có: \(\left|x-2\right|+\left|x-1\right|=3-\left(y+2\right)^2\)
mà \(\left|x-2\right|+\left|x-1\right|=\left|x-1\right|+\left|2-x\right|\ge\left|x-1+2-x\right|=1\) và \(3-\left(y+2\right)^2\le3\forall y\)
nên \(1\le3-\left(y+2\right)^2\le3\)
=>\(-2\le-\left(y+2\right)^2\le0\)
=>\(2\ge\left(y+2\right)^2\ge0\)
mà x,y nguyên
nên ta sẽ có hai trường hợp
TH1: \(\left(y+2\right)^2=0\)
=>\(y+2=0\)
=>y=-2
Ta có: \(\left|x-2\right|+\left|x-1\right|=3-\left(y+2\right)^2\)
=>|x-2|+|x-1|=3(1)
TH1: x<1
=>x-1<0; x-2<0
(1) sẽ trở thành: 1-x+2-x=3
=>3-2x=3
=>2x=0
=>x=0(nhận)
TH2: 1<=x<2
=>x-1>=0; x-2<0
(1) sẽ trở thành: x-1+2-x=3
=>1=3(vô lý)
TH3: x>=2
=>x-1>0; x-2>=0
(1) sẽ trở thành: x-1+x-2=3
=>2x=6
=>x=3(nhận)
TH2: \(\left(y+2\right)^2=1\)
=>\(\left[\begin{array}{l}y+2=1\\ y+2=-1\end{array}\right.\Rightarrow\left[\begin{array}{l}y=-1\\ y=-3\end{array}\right.\)
Ta có: \(\left|x-2\right|+\left|x-1\right|=3-\left(y+2\right)^2\)
=>\(\left|x-2\right|+\left|x-1\right|=3-1=2\) (2)
TH1: x<1
=>x-1<0; x-2<0
(2) sẽ trở thành: 1-x+2-x=2
=>3-2x=2
=>2x=1
=>\(x=\frac12\) (nhận)
TH2: 1<=x<2
=>x-1>=0; x-2<0
(2) sẽ trở thành: x-1+2-x=2
=>1=2(vô lý)
TH3: x>=2
=>x-1>0; x-2>=0
(2) sẽ trở thành: x-1+x-2=2
=>2x=5
=>\(x=\frac52\) (nhận)


<=> (x-2)(x+y-2)=3
=>\(\hept{\begin{cases}x-2=1\\x+y-2=3\end{cases};\hept{\begin{cases}x-2=-1\\x+y-2=-3\end{cases};\hept{\begin{cases}x-2=3\\x+y-2=1\end{cases};\hept{\begin{cases}x-2=-3\\x+y-2=-1\end{cases}}}}}\)
=> \(\hept{\begin{cases}x=3\\y=2\end{cases};\hept{\begin{cases}x=1\\y=-2\end{cases};\hept{\begin{cases}x=5\\y=-2\end{cases};\hept{\begin{cases}x=-1\\y=2\end{cases}}}}}\)

Câu trả lời hay nhất: trừu tượng. nếu không nguyên
có lẽ là đề tìm điều kiện (x+y) thôi vì x+y không cố định
đặt x+y=a=> y=a-x
thay vào pt điều kiện
2(x^2+1)+x^2=2(a-x)(x+1)
3x^2+2 =2ax+2a-2x^2-2x
5x^2+2x-2ax+2-2a=0
5x^2+2(1-a)x+2(1-a)=0
(1-a)^2-10(1-a)>=0
(1-a)(1-a-10)>=0
(a-1)(a+9)>=0
a<=-9
hoặc
a>=1
(x+y)<-9 hoặc (x+y)>=1

Bạn ơi bạn đề có x và y thuộc số tự nhiên không ?
Ta có: \(\left|x+2\right|+\left|x-1\right|=\left|x+2\right|+\left|1-x\right|\ge\left|x+2+1-x\right|=3\forall x\)
\(-\left(y+2\right)^2+3\le3\forall y\)
mà \(\left|x+2\right|+\left|x-1\right|=-\left(y+2\right)^2+3\)
nên \(\begin{cases}\left|x+2\right|+\left|x-1\right|=3\\ 3-\left(y+2\right)^2=3\end{cases}\Rightarrow\begin{cases}\left|x+2\right|+\left|1-x\right|=3\\ \left(y+2\right)^2=0\end{cases}\)
=>\(\begin{cases}\left(x+2\right)\left(x-1\right)\le0\\ y+2=0\end{cases}\)
=>\(\begin{cases}-2\le x\le1\\ y=-2\end{cases}\Rightarrow\begin{cases}x\in\left\lbrace-2;-1;0;1\right\rbrace\\ y=-2\end{cases}\)
Vậy: (x;y)∈{(-2;-2);(-1;-2);(0;-2);(1;-2)}