K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

= 2\(x^{2}\) + 3y\(^{2}\) - 8\(x\) - 6y + 15

A = 2(\(x^{2}\) - 4\(x\) + 4) + 3(y\(^{2} - 2 y + 1\)) + 6

A = 2.(\(x - 2 \left.\right)^{2}\) + 3(y - 1)\(^{2}\) + 4

Vì (\(x - 2 \left.\right)^{2}\) ≥ 0; ∀ \(x\); (y -1)\(^{2}\) ≥ 0 ∀ y 

⇒ 2.(\(x - 2 \left.\right)^{2}\) ≥ 0 ∀ \(x\); 3(y - 1)\(^{2}\) + 4 ≥ y ∀ y 

2.(\(x - 2 \left.\right)^{2}\) + 3(y - 1)\(^{2}\) + 4 ≥ 4; Dấu bằng xảy ra khi:

\(\left{\right. x - 2 = 0 \\ y - 1 = 0\)

\(\left{\right. x = 2 \\ y = 1\)

Vậy A đạt giá trị nhỏ nhất là 4 khi (\(x ; y\)) = (2; 1) 


\(A = - x^{2} - 7 y^{2} - 4 x y + 16 y + 2 x - 12\) \(= - \left(\right. x^{2} + 4 x y + 7 y^{2} \left.\right) + 2 x + 16 y - 12\) \(= - \left(\right. \left(\right. x + 2 y \left.\right)^{2} + 3 y^{2} \left.\right) + 2 x + 16 y - 12\)

ta có

\(u = x + 2 y \Rightarrow x = u - 2 y\)

ta thay

\(A = - \left(\right. u - 1 \left.\right)^{2} - 3 \left(\right. y - 2 \left.\right)^{2} + 1\)

\(\left(\right. u - 1 \left.\right)^{2} \geq 0 , \left(\right. y - 2 \left.\right)^{2} \geq 0 \Rightarrow A \leq 1\)

ta có

\(\textrm{ }u=1,\textrm{ }y=2\textrm{ }\Rightarrow x=-3\)

vậy

\(max⁡A=1\text{t}ạ\text{i}\left(\right.x,y\left.\right)=\left(\right.-3,2\left.\right)\)

17 tháng 9 2017

Giúp mk vs các pạn ơi!!! Mk cần gấp!!!

17 tháng 9 2017

mình mới học lớp 6 xin lỗi nha

Tìm GTLN - GTNN của các biểu thức ?* bài 1: Tìm GTNN: a) A= (x - 5)² + (x² - 10x)² - 24 b) B= (x - 7)² + (x + 5)² - 3 c) C= 5x² - 6x +1 d) D= 16x^4 + 8x² - 9 e) A= (x + 1)(x - 2)(x - 3)(x - 6) f) B= (x - 2)(x - 4)(x² - 6x + 6) g) C= x^4 - 8x³ + 24x² - 8x + 25 h) D= x^4 + 2x³ + 2x² + 2x - 2 i) A= x² + 4xy + 4y² - 6x – 12y +4 k) B= 10x² + 6xy + 9y² - 12x +15 l) C= 5x² - 4xy + 2y² - 8x – 16y +83 m) A= (x - 5)^4 + (x - 7)^4 – 10(x - 5)²(x - 7)² + 9 *...
Đọc tiếp

Tìm GTLN - GTNN của các biểu thức ?

* bài 1: Tìm GTNN: 
a) A= (x - 5)² + (x² - 10x)² - 24 
b) B= (x - 7)² + (x + 5)² - 3 
c) C= 5x² - 6x +1 
d) D= 16x^4 + 8x² - 9 

e) A= (x + 1)(x - 2)(x - 3)(x - 6) 
f) B= (x - 2)(x - 4)(x² - 6x + 6) 
g) C= x^4 - 8x³ + 24x² - 8x + 25 
h) D= x^4 + 2x³ + 2x² + 2x - 2 

i) A= x² + 4xy + 4y² - 6x – 12y +4 
k) B= 10x² + 6xy + 9y² - 12x +15 
l) C= 5x² - 4xy + 2y² - 8x – 16y +83 

m) A= (x - 5)^4 + (x - 7)^4 – 10(x - 5)²(x - 7)² + 9 

* Bài 2: Tìm GTLN: 
a) M= -7x² + 4x -12 
b) N= -16x² - 3x +14 

c) M= -x^4 + 4x³ - 7x² + 12x -5 
d) N= -(x² + x – 2) (x² +9x+18) +27 

* Bài 3: 
1) Cho x - 3y = 1. Tìm GTNN của M= x² + 4y² 
2) Cho 4x - y = 5. Tìm GTNN của 3x²+2y² 
3) Cho a + 2b = 2. Tìm GTNN của a³ + 8b³ 

* Bài 4: Tìm GTLN và GTNN của các biểu thức: 
1) A = (3 - 4x)/(x² + 1) 
2) B= (8x + 3)/(4x² + 1) 
3) C= (2x+1)/(x²+2)

0
28 tháng 2 2021

 4-3=2( dân chơi mới hiểu)

22 tháng 6 2021

Chắc là viết thiếu số "1" đấy, sợ lớp 11 còn chưa làm được cơ

 

23 tháng 11 2021

Answer:

3.

\(x^2+2y^2+2xy+7x+7y+10=0\)

\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)

\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)

\(\Rightarrow4S^2+28S+4y^2+40=0\)

\(\Rightarrow4S^2+28S+49+4y^2-9=0\)

\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)

\(\Rightarrow-3\le2S+7\le3\)

\(\Rightarrow-10\le2S\le-4\)

\(\Rightarrow-5\le S\le-2\left(2\right)\)

Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)

Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)

Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)

Thật ra cách làm dạng bài này cũng gần giống như bài tìm gtnn bạn vừa hỏi, chỉ khác ở chỗ đặt dấu âm ra ngoài để tìm được gtln thôi.