kíu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x+1}{99}+\dfrac{x+2}{98}+\dfrac{x+3}{97}+\dfrac{x+4}{96}=-4\)
⇔\(\dfrac{x+1}{99}+1+\dfrac{x+2}{98}+1+\dfrac{x+3}{97}+\dfrac{x+4}{96}=-4+1+1+1+1\)
⇔\(\dfrac{x+1}{99}+\dfrac{99}{99}+\dfrac{x+2}{98}+\dfrac{98}{98}+\dfrac{x+3}{97}+\dfrac{97}{97}+\dfrac{x+4}{96}+\dfrac{96}{96}=-4+4\)
⇔\(\dfrac{x+100}{99}+\dfrac{x+100}{98}+\dfrac{x+100}{97}+\dfrac{x+100}{96}=0\)
⇔\(\left(x+100\right)\left(\dfrac{1}{99}+\dfrac{1}{98}+\dfrac{1}{97}+\dfrac{1}{96}\right)=0\)
⇔\(x+100=0\left(\dfrac{1}{99}+\dfrac{1}{98}+\dfrac{1}{97}+\dfrac{1}{96}\ne0\right)\)
⇔\(x=-100\)
cíu được phần 1 thôi nhé
Bổ xung ý 2
\(\dfrac{1}{x}+\dfrac{y}{3}=\dfrac{5}{6}\\ \Rightarrow\dfrac{1}{x}=\dfrac{5}{6}-\dfrac{y}{3}\\ \Rightarrow\dfrac{1}{x}=\dfrac{5-2y}{6}\\ \Rightarrow x\cdot\left(5-2y\right)=6\)
`=>x;5-2y in Ư(6)={+-1;+-3;+-2;+-6}`
mà `5-2y` là số lẻ
nên `5-2y in {+-1;+-3}`
Ta có bảng sau :
`5-2y` | `-1` | `-3` | `1` | `3` |
`y` | `3(T//m)` | `4(T//m)` | `2(T//m)` | `1(T//m)` |
`x` | `-1(L)` | `-3(L)` | `1(T//m)` | `3(T//m)` |
Vậy `x;y in {(1;2);(3;1)}`
A B C H D
a)Xét \(\Delta ABC\) vuông tại A có:
\(BC^2=AC^2+AB^2\)
\(BC^2=64+36\)
\(BC^2=100\)
BC=10cm
Xét \(\Delta ABC\) có: AD là phân giác của\(\widehat{BAC}\)
=> \(\dfrac{BD}{AB}=\dfrac{DC}{AC}=\dfrac{BD+DC}{AB+AC}=\dfrac{BC}{AB+AC}=\dfrac{10}{6+8}=\dfrac{5}{7}\)
=> \(\dfrac{BD}{AB}=\dfrac{5}{7}\Leftrightarrow\dfrac{BD}{6}=\dfrac{5}{7}\Rightarrow BD=\dfrac{5}{7}.6\approx4,3\) cm
b)
Xét \(\Delta HBA\) và \(\Delta ABC\) có:
\(\widehat{B}\) chung
\(\widehat{BHA}=\widehat{BAC}\left(=90^o\right)\)
=> \(\Delta HBA\sim\)\(\Delta ABC\) (g-g)
=> \(\dfrac{AH}{AC}=\dfrac{AB}{BC}\Leftrightarrow\dfrac{AH}{8}=\dfrac{6}{10}\Rightarrow AH=\dfrac{3}{5}.8=4,8cm\)
\(\dfrac{HB}{AB}=\dfrac{AB}{BC}\Leftrightarrow\dfrac{HB}{6}=\dfrac{6}{10}\Rightarrow HB=\dfrac{3}{5}.6=3,6cm\)
c) Có : \(\dfrac{HB}{AB}=\dfrac{AB}{BC}\) ( \(\Delta HBA\sim\)\(\Delta ABC\) )
=> \(AB^2=HB.BC\)
a,\(\dfrac{37}{12}-3=\dfrac{37}{12}-\dfrac{3}{1}=\dfrac{37}{12}-\dfrac{36}{12}=\dfrac{1}{12}\)
b,\(\dfrac{4}{5}x\dfrac{6}{7}=\dfrac{24}{35}\)
15237
+ 6542
----------
21779
b, 3444 l 28
64 l ------------
84 l 123
0
a: \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=9\end{matrix}\right.\)
Bài 5:
a:
AMCD là hình vuông
=>CM⊥MA tại M
=>CM⊥AB tại M
MBFE là hình vuông
=>MB⊥ME tại M
=>ME⊥AB tại M
mà CM⊥AB tại M
và CM,ME có điểm chung là M
nên M,C,E thẳng hàng
Gọi K là giao điểm của AC và BE
AMCD là hình vuông
=>AC là phân giác của góc DAM
=>\(\hat{CAM}=\frac12\cdot\hat{DAM}=45^0\)
MBFE là hình vuông
=>BE là phân giác của góc MBF
=>\(\hat{MBE}=\hat{FBE}=\frac12\cdot\hat{MBF}=45^0\)
Xét ΔKAB có \(\hat{KAB}+\hat{KBA}=45^0+45^0=90^0\)
nên ΔKAB vuông tại K
=>AK⊥EB tại K
Xét ΔEAB có
AK,EM là các đường cao
AK cắt EM tại C
Do đó: C là trực tâm của ΔEAB
=>BC⊥AE
Bài 4:
a: Xét ΔADI vuông tại D và ΔAHI vuông tại H có
AI chung
\(\hat{DAI}=\hat{HAI}\)
Do đó: ΔADI=ΔAHI
=>AD=AH
mà AD=AB
nên AH=AB
Xét ΔAHK vuông tại H và ΔABK vuông tại B có
AK chung
AH=AB
Do đó: ΔAHK=ΔABK
b: ΔAHK=ΔABK
=>\(\hat{HAK}=\hat{BAK}\)
=>AK là phân giác của góc HAB
=>\(\hat{HAB}=2\cdot\hat{HAK}\)
\(\hat{DAH}+\hat{BAH}=\hat{BAD}\) (tia AH nằm giữa hai tia AB và AD)
\(\Rightarrow2\left(\hat{IAH}+\hat{HAK}\right)=90^0\)
=>\(2\cdot\hat{IAK}=90^0\)
=>\(\hat{IAK}=45^0\)
no