Giúp mình bài 5,2 và bài 6 với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình làm những bài bn chưa lm nhé
9B
10A
bài 2
have repainted
bàii 3
ride - walikking
swimming
watch
Câu 5:
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
c: Xét tứ giác AEDF có
\(\widehat{EAF}=\widehat{AFD}=\widehat{AED}=90^0\)
Do đó: AEDF là hình chữ nhật
mà AD là tia phân giác của \(\widehat{FAE}\)
nên AEDF là hình vuông
Bài 6:
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường phân giác
b: Xét ΔADM và ΔAEM có
AD=AE
\(\widehat{DAM}=\widehat{EAM}\)
AM chung
Do đó: ΔADM=ΔAEM
Suy ra: \(\widehat{ADM}=\widehat{AEM}=90^0\)
hay ME⊥AC
\(b,N=\left(2x-1\right)^2-4\ge-4\\ N_{min}=-4\Leftrightarrow x=\dfrac{1}{2}\\ c,P=\left(2x-5\right)^2+6\left(2x-5\right)+9-4\\ P=\left(2x-5+3\right)^2-4=\left(2x-2\right)^2-4\ge-4\\ P_{min}=-4\Leftrightarrow x=1\\ d,Q=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+1\\ Q=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\\ Q_{min}=1\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
6a.
$M=x^2-x+1=(x^2-x+\frac{1}{4})+\frac{3}{4}$
$=(x-\frac{1}{2})^2+\frac{3}{4}\geq \frac{3}{4}$
Vậy $M_{\min}=\frac{3}{4}$ khi $x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}$
Bài 6:
\(\sqrt{x^2-12x+36}=10\\ \sqrt{\left(x-6\right)^2}=10\\ \left|x-6\right|=10\\ x-6=10\\ x=10+6=16\)
6:
=>\(\sqrt{\left(x-6\right)^2}=10\)
=>|x-6|=10
=>x-6=10 hoặc x-6=-10
=>x=16 hoặc x=-4
Câu 5:
2) Ta có:
\(\Delta^'=\left[-\left(m-1\right)\right]^2-1\cdot\left(m-5\right)=m^2-2m+1-m+5\)
\(=m^2-3m+6=\left(m^2-3m+\frac{9}{4}\right)+\frac{15}{4}=\left(m-\frac{3}{2}\right)^2+\frac{15}{4}\ge\frac{15}{4}>0\left(\forall m\right)\)
=> PT luôn có 2 nghiệm phân biệt
Khi đó theo hệ thức viet ta có: \(\hept{\begin{cases}x_1+x_2=2m-2\\x_1x_2=m-5\end{cases}}\)
Ta có: \(P^2=\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2=\left(2m-2\right)^2-4\left(m-5\right)\)
\(=4m^2-8m+4-4m+20\)
\(=4m^2-12m+24=\left(4m^2-12m+9\right)+15=\left(2m-3\right)^2+15\ge15\left(\forall m\right)\)
\(\Rightarrow P\ge\sqrt{15}\)
Dấu "=" xảy ra khi: \(2m-3=0\Rightarrow m=\frac{3}{2}\)
Vậy \(P_{min}=\sqrt{15}\Leftrightarrow m=\frac{3}{2}\)
Đề này đề thi thử vào THPT Ngô Gia Tự 2021-2022 phải không?
Câu 6:
Gọi 2 giao điểm lần lượt có tọa độ là: \(\left(-1;y_1\right)\) và \(\left(2;y_2\right)\)
Thay vào (P) ta được: \(\hept{\begin{cases}y_1=-2.\left(-1\right)^2=-2\\y_2=-2.2^2=-8\end{cases}}\)
=> Tọa độ 2 giao điểm lần lượt là \(\left(-1;-2\right)\) và \(\left(2;-8\right)\)
Lần lượt thay vào (d) ta được: \(\hept{\begin{cases}-a+b=-2\\2a+b=-8\end{cases}}\Rightarrow\hept{\begin{cases}a=-2\\b=-4\end{cases}}\)
Vậy \(\hept{\begin{cases}a=-2\\b=-4\end{cases}}\)
Đề này mình làm full rồi:))