(-3/2) mũ 7 - 1/2 : 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a,\(5^3.2-100:4+2^3.5\)
= 125 . 2 - 25 + 8 . 5
= 250 - 25 + 40
= 265
b, \(6^2:9+50.2-3^3.3\)
= 36 : 9 + 100 - 27 . 3
= 4 + 100 - 81
= 23
b) \(5^3\cdot2-100:4+2^3\cdot5\)
\(=125\cdot2-25+8\cdot5\)
\(=250-25+40\)
\(=225+40=265\)
c) \(6^2:9+50\cdot2+3^3-3\)
\(=36:9+100+27-3\)
\(=4+100+27-3\)
\(=104+27-3=131-3=128\)
d) \(3^2\cdot5+2^3\cdot10-81:3\)
\(=9\cdot5+8\cdot10-27\)
\(=45+80-27\)
\(=125-27=98\)
e) \(5^{13}:5^{10}-25\cdot2^2\)
\(=5^{13-10}-5^2\cdot2^2\)
\(=5^3-\left(5\cdot2\right)^2\)
\(=125-10^2\)
\(=125-100=25\)
f) \(20:2^2+5^9:5^8\)
\(=20:4+5^{9-8}\)
\(=5+5^1=5+5=10\)
g) \(100:5^2+7\cdot3^2\)
\(=10^2:5^2+7\cdot9\)
\(=\left(10:5\right)^2+63\)
\(=2^2+63=4+63=67\)
h) \(84:4+3^9:3^7+5^0\)
\(=21+3^{9-7}+1\)
\(=21+3^2+1\)
\(=21+9+1=30+1=31\)
i) \(29-\left[16+3\cdot\left(51-49\right)\right]\)
\(=29-\left[16+3\cdot2\right]\)
\(=29-\left[16+6\right]\)
\(=29-22=7\)
j) \(\left(15^{19}:5^{17}+3\right)\cdot0:7\)
\(=\left[\left(3\cdot5\right)^{19}:5^{17}+3\right]\cdot0\)
Vì số nào nhân cho 0 cũng bằng 0 nên giá trị biểu thức trên bằng 0
k) \(7^9:7^7-3^2+2^3\cdot5\)
\(=7^{9-7}-9+8\cdot5\)
\(=7^2-9+40\)
\(=49-9+40=40+40=80\)
l) \(1200:2+6^2\cdot2^1+18\)
\(=600+36\cdot2+18\)
\(=600+72+18\)
\(=600+\left(72+18\right)=600+90=690\)
m) \(5^9:5^7+70:14-20\)
\(=5^{9-7}+5-20\)
\(=5^2+5-20\)
\(25+5-20=30-20=10\)
Những câu sau mình làm sau nhé bạn!!!!!!!

1; 73.52.54.76:(55.78)
= (73.76).(52.54) : (55.78)
= 79.56: (55.78)
= (79:78).(56:55)
= 7.5
= 35
2; 33.a7.3.a2:(34.a6)
= (33.3).(a7.a2): (34.a6)
= 34.a9: (34.a6)
= (34:34).(a9:a6)
= a3

1. 53 = 5.5.5 = 125
2. 27 = 2.2.2.2.2.2.2 = 128
3. 44 = 4.4.4.4 = 256
4. 73 = 7.7.7 = 343
6. 35 = 243
7. 26 = 64
8. 34 = 81
9. 83 = 512
11. 132 = 169
12. 112 = 121
13. 142 = 196
14. 152 = 225
16. 172 = 289
17. 182 = 324
18. 192 = 361
19. 202 = 400
21. 104 = 10000
22. 105 = 100000
23. 106 = 1000000
24. 107 = 10000000

a) \(12\cdot\left(-\dfrac{2}{3}\right)^2+\dfrac{4}{3}\)
\(=12\cdot\dfrac{4}{9}+\dfrac{4}{3}\)
\(=\dfrac{12\cdot4}{9}+\dfrac{4}{3}\)
\(=\dfrac{16}{3}+\dfrac{4}{3}\)
\(=\dfrac{16+4}{3}\)
\(=\dfrac{20}{3}\)
b) \(\left(\dfrac{3}{2}\right)^2-\left[0,5:2-\sqrt{81}\cdot\left(-\dfrac{1}{2}\right)^2\right]\)
\(=\dfrac{9}{4}-\left(\dfrac{1}{2}:2-9\cdot\dfrac{1}{4}\right)\)
\(=\dfrac{9}{4}-\left(\dfrac{1}{4}-9\cdot\dfrac{1}{4}\right)\)
\(=\dfrac{9}{4}-\dfrac{1}{4}\cdot\left(1-9\right)\)
\(=\dfrac{9}{4}+\dfrac{8}{4}\)
\(=\dfrac{17}{4}\)
c) \(\left(-\dfrac{3}{4}+\dfrac{2}{3}\right):\dfrac{5}{11}+\left(-\dfrac{1}{4}+\dfrac{1}{3}\right)\)
\(=-\dfrac{1}{12}:\dfrac{5}{11}+\dfrac{1}{12}\)
\(=\dfrac{1}{12}\cdot-\dfrac{11}{5}+\dfrac{1}{12}\)
\(=\dfrac{1}{12}\cdot\left(-\dfrac{11}{5}+1\right)\)
\(=\dfrac{1}{12}\cdot-\dfrac{6}{5}\)
\(=-\dfrac{1}{10}\)
d) \(\dfrac{\left(-1\right)^3}{15}+\left(-\dfrac{2}{3}\right)^2:2\dfrac{2}{3}-\left|-\dfrac{5}{6}\right|\)
\(=-\dfrac{1}{15}+\dfrac{4}{9}:\left(2+\dfrac{2}{3}\right)-\dfrac{5}{6}\)
\(=-\dfrac{1}{15}+\dfrac{4}{9}:\dfrac{8}{3}-\dfrac{5}{6}\)
\(=-\dfrac{9}{10}+\dfrac{1}{6}\)
\(=-\dfrac{11}{15}\)
e) \(\dfrac{3^7\cdot8^6}{6^6\cdot\left(-2\right)^{12}}\)
\(=\dfrac{3^7\cdot\left(2^3\right)^6}{2^6\cdot3^6\cdot2^{12}}\)
\(=\dfrac{3^7\cdot2^{18}}{2^{6+12}\cdot3^6}\)
\(=\dfrac{2^{18}\cdot3^7}{2^{18}\cdot3^6}\)
\(=3^{7-6}\)
\(=3\)
\(a,12\cdot\left(-\dfrac{2}{3}\right)^2+\dfrac{4}{3}\\ =12\cdot\dfrac{4}{9}+\dfrac{4}{3}\\ =\dfrac{16}{3}+\dfrac{4}{3}\\ =\dfrac{20}{3}\\ b,\left(\dfrac{3}{2}\right)^2-\left[0,5:2-\sqrt{81}.\left(-\dfrac{1}{2}\right)^2\right]\\ =\dfrac{9}{4}-\left(\dfrac{1}{2}\cdot\dfrac{1}{2}-9\cdot\dfrac{1}{4}\right)\\ =\dfrac{9}{4}-\left(\dfrac{1}{4}-\dfrac{9}{4}\right)\\ =\dfrac{9}{4}-\left(-\dfrac{8}{4}\right)\\ =\dfrac{17}{4}\)
\(c,\left(-\dfrac{3}{4}+\dfrac{2}{3}\right):\dfrac{5}{11}+\left(-\dfrac{1}{4}+\dfrac{1}{3}\right)\\ =\left(-\dfrac{9}{12}+\dfrac{8}{12}\right)\cdot\dfrac{11}{5}+\left(-\dfrac{3}{12}+\dfrac{4}{12}\right)\\ =-\dfrac{1}{12}\cdot\dfrac{11}{5}+\dfrac{1}{12}\\ =-\dfrac{11}{60}+\dfrac{1}{12}\\ =-\dfrac{1}{10}\)
\(d,\dfrac{-1^3}{15}+\left(-\dfrac{2}{3}\right)^2:2\dfrac{2}{3}-\left(-\dfrac{5}{6}\right)\\ =-\dfrac{1}{15}+\dfrac{4}{9}\cdot\dfrac{3}{8}+\dfrac{5}{6}\\ =-\dfrac{1}{15}+\dfrac{1}{6}+\dfrac{5}{6}\\ =\dfrac{1}{10}+\dfrac{5}{6}\\ =\dfrac{14}{15}\)
`e,` Không hiểu đề á c: )

Ta có:
A = 1 + 3 + 32 + 33 + ... + 36
3A = 3 + 32 + 33 + ... + 37
3A - A = (3 + 32 + 33 + ... + 37) - 1 + 3 + 32 + 33 + ... + 36
2A = 37 - 1
Ta lại có:
B = (37 - 1) : 2
2B = 37 - 1
Vì 2A = 2b nên A = B.

*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)
\(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)
\(=6\times\left(2^2+2^3+...+2^{2008}\right)\)
\(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)
\(\Rightarrow A⋮3\)
*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)
\(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(\Rightarrow A⋮7\)
Mình sửa lại đề C 1 chút xíu
*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)
\(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)
\(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(\Rightarrow C⋮4\)
Các câu khác làm tương tự nhé. Chúc bạn học tốt!
Đề là \(\left(-\frac32\right)^7-\frac12:6\) đúng ko em?
Bước 1: Tính giá trị của \(\left(\left(\right. - \frac{3}{2} \left.\right)\right)^{7}\)
Ta tính lũy thừa:
\(\left(\left(\right. - \frac{3}{2} \left.\right)\right)^{7} = - \left(\left(\right. \frac{3}{2} \left.\right)\right)^{7} = - \frac{3^{7}}{2^{7}}\)
Ta tính giá trị \(3^{7}\) và \(2^{7}\):
Vậy:
\(\left(\left(\right. - \frac{3}{2} \left.\right)\right)^{7} = - \frac{2187}{128}\)
Bước 2: Tính giá trị của \(\frac{1}{2} \div 6\)
Chia \(\frac{1}{2}\) cho 6:
\(\frac{1}{2} \div 6 = \frac{1}{2} \times \frac{1}{6} = \frac{1}{12}\)
Bước 3: Kết hợp các kết quả
Biểu thức ban đầu là:
\(\left(\left(\right. - \frac{3}{2} \left.\right)\right)^{7} - \frac{1}{2} \div 6 = - \frac{2187}{128} - \frac{1}{12}\)
Để thực hiện phép trừ này, ta cần quy đồng mẫu số. Mẫu số chung của 128 và 12 là 384.
\(- \frac{2187}{128} = - \frac{2187 \times 3}{128 \times 3} = - \frac{6561}{384}\)
\(\frac{1}{12} = \frac{1 \times 32}{12 \times 32} = \frac{32}{384}\)
Bước 4: Thực hiện phép trừ
Bây giờ, ta có:
\(- \frac{6561}{384} - \frac{32}{384} = \frac{- 6561 - 32}{384} = \frac{- 6593}{384}\)
Kết luận:
Kết quả của biểu thức là:
\(\frac{- 6593}{384}\)