K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8

Ta có: \(\left(2x-1\right)^{2024}\ge0\)

\(\left|x+y+1\right|\ge0\) nên \(\left|x+y+1\right|^{2025}\ge0\)

Suy ra: \(\left(2x-1\right)^{2024}+\left|x+y+1\right|^{2025}\ge0\)

Dấu "=" xảy ra khi và chỉ khi:

\(\begin{cases}2x-1=0\\ x+y+1=0\end{cases}\rArr\begin{cases}2x=1\\ x+y=-1\end{cases}\rArr\begin{cases}x=\frac12\\ y=-1-\frac12=-\frac32\end{cases}\)

Vậy: \(x=\frac12;y=-\frac32\)

2x−1)2024≥0 vì lũy thừa bội/chẵn của một số cho kết quả không âm

\(\mid x + y + 1 \mid^{2025} = \left(\right. \mid x + y + 1 \mid \left.\right)^{2025} \geq 0\) vì giá trị tuyệt đối không âm, mũ lẻ hay chẵn đều không làm nó âm

Nếu tổng của hai số không âm bằng \(0\) thì mỗi số phải bằng \(0\) (nếu một trong hai dương thì tổng > 0 — mâu thuẫn)

Vậy

\(\left(\right. 2 x - 1 \left.\right)^{2024} = 0 \Rightarrow x = \frac{1}{2} ,\) \(\mid x+y+1\mid^{2025}=0\Rightarrow\mid x+y+1\mid=0\Rightarrow y=-x-1\)

Thay \(x = \frac{1}{2}\) được \(y = - \frac{3}{2}\)

vậy

\(\left(\right.x,y\left.\right)=\left(\right.\frac{1}{2},\textrm{ }-\frac{3}{2}\left.\right)\)

\(5x^2+5y^2+8xy-2x+2y+2=0\)

=>\(4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0\)

=>\(4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

=>x=1 và y=-1

\(M=\left(1-1\right)^{2023}+\left(1-2\right)^{2024}+\left(-1+1\right)^{2025}=1\)

8 tháng 10 2023

E kh hiểu lắm ạ="))

22 tháng 11 2023

c, |2\(x\) + 1| + |3\(x\) - 1| = 0

   vì |2\(x\) + 1| ≥ 0; |3\(x\) - 1| = 0

  ⇒ |2\(x\) + 1| + |3\(x\) - 1| = 0

   ⇔ \(\left\{{}\begin{matrix}2x+1=0\\3x-1=0\end{matrix}\right.\)

   ⇔ \(\left\{{}\begin{matrix}2x=-1\\3x=1\end{matrix}\right.\)

   \(\Rightarrow\) \(\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)

       \(-\dfrac{1}{2}\) < \(\dfrac{1}{3}\) 

Vậy \(x\) \(\in\) \(\varnothing\)

22 tháng 11 2023

a, Nếu 4.|3\(x\) - 1| = |6\(x\) - 2| + |-1,5|

             4.|3\(x\) -1| - 2.|3\(x\) - 1|  = 1,5

           Nếu 3\(x\) - 1 ≥ 0 ⇒ \(x\) ≥ \(\dfrac{1}{3}\)

Ta có: 4.(3\(x\) - 1) - 2.(3\(x\) - 1) = 1,5

           12\(x\) - 4 - 6\(x\) + 2 = 1,5

            6\(x\) - 2  = 1,5

            6\(x\)        = 1,5 + 2

            6\(x\)       = 3,5

               \(x\)      = 3,5: 6

                \(x\)    = \(\dfrac{7}{12}\)

Nếu 3\(x\) - 1 < 0 ⇒ \(x\) < \(\dfrac{1}{3}\)

Ta có: - 4.(3\(x\) - 1) = - (6\(x\) - 2) + 1,5

           -12\(x\) + 4 + 6\(x\) - 2 = 1,5

             -6\(x\) + 2 = 1,5

              6\(x\)         = 2- 1,5

              6\(x\)          = 0,5

                 \(x\)         = 0,5 : 6

                 \(x\)        = \(\dfrac{1}{12}\)

Vậy \(x\) \(\in\) {\(\dfrac{1}{12}\)\(\dfrac{7}{12}\)}

 

                

      

9 tháng 1 2024

a, 2\(^3\) . x + 2005\(^0\) . x = 994-15:3+1\(^{2025}\) 

   8 .x + 1 . x = 990

x . [ 8 +1 ] = 990

x . 9 = 990

x = 990 : 9

x = 110

9 tháng 1 2024

các bạn giúp mình với mình đang vội.

 

a: \(\left(2^3\right)^{1^{2005}}\cdot x+2005^0\cdot x=9915:3+1^{2025}\)

=>\(8\cdot x+1\cdot x=3305+1\)

=>\(9x=3306\)

=>\(x=\dfrac{3306}{9}=\dfrac{1102}{3}\)

b: \(2^x+2^{x+1}+2^{x+2}+2^{x+3}=480\)

=>\(2^x+2^x\cdot2+2^x\cdot4+2^x\cdot8=480\)

=>\(2^x\left(1+2+4+8\right)=480\)

=>\(2^x\cdot15=480\)

=>\(2^x=32\)

=>\(2^x=2^5\)

=>x+5

 

Ta có: x+y+z=0

=>\(\left(x+y+z\right)^2=0^2=0\)

=>\(x^2+y^2+z^2+2\left(xy+yz+xz\right)=0\)

=>\(x^2+y^2+z^2=0\)

\(x^2\ge0\forall x;y^2\ge0\forall y;z^2\ge0\forall z\)

nên \(\begin{cases}x=0\\ y=0\\ z=0\end{cases}\)

\(\left(x-1\right)^{2023}+y^{2024}+\left(z+1\right)^{2025}\)

\(=\left(0-1\right)^{2023}+0^{2024}+\left(0+1\right)^{2025}\)

=-1+0+1

=0

NV
30 tháng 8

Đăng câu hỏi 1 lần thôi em

Ta có: x+y+z=0

=>\(\left(x+y+z\right)^2=0^2=0\)

=>\(x^2+y^2+z^2+2\left(xy+yz+xz\right)=0\)

=>\(x^2+y^2+z^2=0\)

\(x^2\ge0\forall x;y^2\ge0\forall y;z^2\ge0\forall z\)

nên \(\begin{cases}x=0\\ y=0\\ z=0\end{cases}\)

\(\left(x-1\right)^{2023}+y^{2024}+\left(z+1\right)^{2025}\)

\(=\left(0-1\right)^{2023}+0^{2024}+\left(0+1\right)^{2025}\)

=-1+0+1

=0

Ko biết

1 tháng 11 2024

A = \(\dfrac{1}{2021.2022}\) + \(\dfrac{1}{2022.2023}\) + \(\dfrac{1}{2023.2024}\) + \(\dfrac{1}{2024.2025}\) - \(\dfrac{4}{2021.2025}\)

A = \(\dfrac{1}{2021}\) - \(\dfrac{1}{2022}\) + \(\dfrac{1}{2022}\) - \(\dfrac{1}{2023}\) + \(\dfrac{1}{2023}\) - \(\dfrac{1}{2024}\) + \(\dfrac{1}{2024}\) - \(\dfrac{1}{2025}\) - \(\dfrac{1}{2021}\) + \(\dfrac{1}{2025}\)

A = (\(\dfrac{1}{2021}\) - \(\dfrac{1}{2021}\))  + (\(\dfrac{1}{2022}\) - \(\dfrac{1}{2022}\)) + (\(\dfrac{1}{2023}\) - \(\dfrac{1}{2023}\)) + (\(\dfrac{1}{2024}\) - \(\dfrac{1}{2024}\)) + (\(\dfrac{1}{2025}\) - \(\dfrac{1}{2025}\))

A = 0 + 0  +0  + 0+ ... + 0

A = 0