Chứng minh biểu thức sau ko phụ thuộc vào biến:
\(\frac{(2x+5)^2+(5x-2)^2}{x^2+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(a,P=\left(x^2+8x\right)\left(2x-5\right)+x^2\left(-11-2x\right)-8+40x\)
\(=2x^3-5x^2+16x^2-40x-11x^2-2x^3-8+40x\)
\(=\left(2x^3-2x^3\right)+\left(-5x^2+16x^2-11x^2\right)+\left(-40x+40x\right)-8\)
\(=-8\)
\(\Rightarrow \) Giá trị của \(P\) không phụ thuộc vào biến \(x\).
\(b,Q=\left(5x-2\right)\left(x^2+2x\right)-x\left(5x^2+8x-4\right)+26\)
\(=5x^3+10x^2-2x^2-4x-5x^3-8x^2+4x+26\)
\(=\left(5x^3-5x^3\right)+\left(10x^2-2x^2-8x^2\right)+\left(-4x+4x\right)+26\)
\(=26\)
\(\Rightarrow\) Giá trị của \(Q\) không phụ thuộc vào biến \(x\).
\(c,B=3x\left(x+5\right)-\left(3x+18\right)\left(x-1\right)+14\)
\(=3x^2+15x-\left(3x^2-3x+18x-18\right)+14\)
\(=3x^2+15x-3x^2+3x-18x+18+14\)
\(=\left(3x^2-3x^2\right)+\left(15x+3x-18x\right)+\left(18+14\right)\)
\(=32\)
\(\Rightarrow\) Giá trị của \(B\) không phụ thuộc vào biến \(x\).
#\(Toru\)
a: =2x^3-5x^2+16x^2-40x-11x^2-2x^3-8+40x
=-8
b: =5x^3+10x^2-2x^2-4x-5x^3-8x^2+4x+26
=26
c: =3x^2+15x-3x^2+3x-18x+18+14
=32

\(\dfrac{\left(2x+5\right)^2+\left(5x-2\right)^2}{x^2+1}=\dfrac{4x^2+20x+25+25x^2-20x+4}{x^2+1}\)
\(=\dfrac{29x^2+29}{x^2+1}=\dfrac{29\left(x^2+1\right)}{x^2+1}=29\)
Vậy.....
Ta có: \(\dfrac{\left(2x+5\right)^2+\left(5x-2\right)^2}{x^2+1}\)
\(=\dfrac{4x^2+20x+25+25x^2-20x+4}{x^2+1}\)
\(=\dfrac{29x^2+29}{x^2+1}=29\)

Bài làm :
\(a,A=\left(x-5\right)\left(x^2+5x+25\right)-x^3+2\)
\(=x^3+5x^2+25x-5x^2-25x-125-x^3+2\)
\(=\left(x^3-x^3\right)+\left(5x^2-5x^2\right)+\left(25x-25x\right)+\left(-125+2\right)\)
\(=-123\)
Vậy giá trị của biểu thức A không phụ thuộc vào biến x .
\(b,B=\left(2x+3\right)\left(4x^2-6x+9\right)-8x\left(x^2+2\right)+16x+5\)
\(=8x^3-12x^2+18x+12x^2-18x+27-8x^3-16x+16x+5\)
\(=\left(8x^3-8x^3\right)+\left(-12x^2+12x^2\right)+\left(18x-18x-16x+16x\right)+\left(27+5\right)\)
\(=32\)
Vậy giá trị biểu thức B không phụ thuộc vào biến x .
Học tốt nhé
a) ( x - 5 )( x2 + 5x + 25 ) - x3 + 2 ( x2 là còn phụ thuộc :)) )
= x3 - 125 - x3 + 2
= -123
=> đpcm
b) ( 2x + 3 )( 4x2 - 6x + 9 ) - 8x( x2 + 2 ) + 16x + 5
= ( 2x )3 + 27 - 8x3 - 16x + 16x + 5
= 8x3 - 8x3 + 32
= 32
=> đpcm

\(=x^2-5x+x-5+3\left(x^2-4\right)-\left(9x^2-3x+\frac{1}{4}\right)+5x^2\)
\(=\left(x^2+3x^2-9x^2+5x^2\right)+\left(-5x+x+3x\right)+\left(-5-12-\frac{1}{4}\right)\)
\(=0x^2-x-\frac{69}{4}\)Bạn xem lại đề bài nhé!

2) \(P=\left(2x+1\right)\left(4x^2-2x+1\right)=8x^3+1=8.\left(\dfrac{1}{2}\right)^3+1=8.\dfrac{1}{8}+1=2\)
\(Q=\left(x+3y\right)\left(x^2-3xy+9y^2\right)=x^3+27y^3=1^3+27.\left(\dfrac{1}{3}\right)^3=1+27.\dfrac{1}{27}=2\)
3) \(\left(8x+2\right)\left(1-3x\right)+\left(6x-1\right)\left(4x-10\right)=-50\)
\(\Leftrightarrow-24x^2+2x+2+24x^2-64x+10=-50\)
\(\Leftrightarrow-62x=-62\Leftrightarrow x=1\)

\(\frac{\left(x+y\right)^2}{x}.\left(\frac{x}{\left(x+y\right)^2}-\frac{x}{x^2-y^2}\right)-\frac{5x-3y}{y-x}\left(đk:x\text{≠}0-y;y\right).\)
\(=\frac{\left(x+y\right)^2}{x}.\left(\frac{x}{\left(x+y\right)^2}-\frac{x}{\left(x-y\right)\left(x+y\right)}\right)-\frac{5x-3y}{y-x}\)
\(=\frac{\left(x+y\right)^2}{x}.\frac{x\left(x-y\right)-x\left(x+y\right)}{\left(x+y\right)^2\left(x-y\right)}+\frac{5x-3y}{x-y}\)
\(=\frac{1}{x}.\frac{x^2-xy-x^2-xy}{\left(x+y\right)^2\left(x-y\right)}+\frac{5x-3y}{x-y}\)
\(=\frac{1}{x}.\frac{-2xy}{x-y}+\frac{5x-3y}{x-y}\)
\(=\frac{-2y}{x-y}+\frac{5x-3y}{x-y}\)
\(=\frac{-2xy+5x-3y}{x-y}\)
\(=\frac{5\left(x-y\right)}{x-y}\)
\(=5\)
Ta có đpcm
Ta có: \(\frac{\left(2x+5\right)^2+\left(5x-2\right)^2}{x^2+1}\)
\(=\frac{4x^2+20x+25+25x^2-20x+4}{x^2+1}\)
\(=\frac{29x^2+29}{x^2+1}=\frac{29\left(x^2+1\right)}{x^2+1}=29\)
=>Biểu thức này không phụ thuộc vào biến