Chứng minh : \(2x+1\)và \(6x+5\)là 2 số nguyên tố cùng nhau (\(\forall x\in N\)).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mk hướng dẫn thôi chứ ko còn thời gian nx
Đầu tiên bạn lấy x+n sao cho x+n chia hết cho 8;10;15;20
Sau đó bạn tìm BCNN(các số trên)
Sau đó bạn lấy BCNN(các số trên)-n là ra
2, GỌi UCLN(2x+1;6x+5)=d
Ta có:
2x+1 chia hết cho d
6x+5 chia hết cho d
=> 6x+5-3(2x+1) chia hết cho d
=> 2 chia hết cho d
=> d E {1;2}
Nhưng ta có: 6x+5;2x+1 là các số lẻ
=> d =1
=> (ĐPCM)
Gọi ƯCLN( 2x+1, 6x+5) là d
- 2x+1 chia hết cho d hay 3.(2x+1) chia hết cho d = 6x+3 chia hết cho d
( chia hết bạn viết kí hiệu của dấu chia hết nha)
- 6x+5 chia hết cho d
Ta có : ( 6x+5)-( 6x+3) chia hết cho d
= 6x+5 - 6x+3 chia hết cho d
= 2 chia hết cho d
=> d thuộc tập hợp 1;2
( d thuộc tập hợp 1;2 bn viết kí hiệu nha)
Mà 6x+5 và 2x+1 là số lẻ nên d = 1
Vậy UwCLN ( 2x+1, 6x+5) = 1 hay hai số 2x+1 và 6x+5 là hai số nguyên tố cùng nhau.
(6x+5)-3(2x+1)=6x-6x+5-3=2
Ước lớn nhất có thể là: 2
2x+1và 6x+5 là số lẻ không thể có ước là 2
=> ước lớn nhất là 1 => dpcm