1/1x2+1/2x3+1/3x4+............+1/19x20+1/20x21
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+\ldots+\frac{1}{19\times20}+\frac{1}{20\times21}\)
\(=\frac11-\frac12+\frac12-\frac13+\frac14-\frac14+\ldots+\frac{1}{20}-\frac{1}{21}\)
\(=1-\frac{1}{21}\)
Vậy kết quả của phép tính trên là \(=\frac{20}{21}\)


1/1x2 + 1/2×3 + 1/3×4 + 1/4×5 +....+ 1/18×19 + 1/19×20
= 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +....+ 1/18 - 1/19 + 1/19 - 1/20
= 1 - 1/20
= 19/20

\(A=1\times2+2\times3+3\times4+...+19\times20\)
\(A\times3=3\times\left(1\times2+2\times3+3\times4+...+19\times20\right)\)
\(A\times3=1\times2\times3+2\times3\times3+3\times4\times3+...+19\times20\times3\)
\(A\times3=1\times2\times3+2\times3\times\left(4-1\right)+3\times4\times\left(5-2\right)+....+19\times20\times\left(21-18\right)\)
\(A\times3=1\times2\times3-1\times2\times3+2\times3\times4-2\times3\times4+3\times4\times5+...+19\times20\times21\)
\(A\times3=\left(1\times2\times3-1\times2\times3\right)+\left(2\times3\times4-2\times3\times4\right)+...+\left(18\times19\times20-18\times19\times20\right)+19\times20\times21\)
\(A\times3=19\times20\times21\)
\(A\times3=7980\)

A=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+....+1/19-1/20
A=1-1/20
A=20/20-1/20
A=19/20

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{18.19}+\frac{1}{19.20}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\)
\(=1-\frac{1}{20}=\frac{19}{20}\)
Vậy\(A=\frac{19}{20}\)

M=1.2+2.3+3.4+...+19.20
3.M=1.2.3+2.3.3+3.4.3+...+19.20.3
3.M=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+19.20.(21-18)
3.M=(1.2.3-0.1.2)+(2.3.4-1.2.3)+(3.4.5-2.3.4)+...+(19.20.21-18.19.20)
Những cái bị gạch là giản ước.
3.M=19.20.21-0.1.2
3.M=7980-0
3.M=7980
M=7980:3
M=2660
Vậy M=2660
Dấu . là dấu nhân
A = \(\frac{1}{1\times2}\) + \(\frac{1}{2\times3}\) + \(\frac{1}{3\times4}\) + ... + \(\frac{1}{19\times20}\) + \(\frac{1}{20\times21}\)
A = \(\frac11\) - \(\frac12\) + \(\frac12\) - \(\frac13\) + \(\frac13\) - \(\frac14\) + ... + \(\frac{1}{19}\) - \(\frac{1}{20}\) + \(\frac{1}{20}\) - \(\frac{1}{21}\)
A = \(\frac11\) - \(\frac{1}{21}\)
A = \(\frac{20}{21}\)
Ta có: \(\frac{1}{1\times2}+\frac{1}{2\times3}+\cdots+\frac{1}{20\times21}\)
\(=1-\frac12+\frac12-\frac13+\cdots+\frac{1}{20}-\frac{1}{21}\)
\(=1-\frac{1}{21}=\frac{20}{21}\)