K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔABD và ΔEBD có 

BA=BE(gt)

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

BD chung

Do đó: ΔABD=ΔEBD(c-g-c)

Suy ra: DA=DE(hai cạnh tương ứng) và \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)

mà \(\widehat{BAD}=90^0\)(gt)

nên \(\widehat{BED}=90^0\)

hay DE⊥BC

Ta có: DA=DE(cmt)

mà DE<DC(ΔDEC vuông tại E có DC là cạnh huyền)

nên DA<DC

b) Ta có: ΔBAC vuông tại A(gt)

nên \(\widehat{ABC}+\widehat{C}=90^0\)(hai góc nhọn phụ nhau)(1)

Ta có: ΔEDC vuông tại E(cmt)

nên \(\widehat{EDC}+\widehat{C}=90^0\)(hai góc nhọn phụ nhau)(2)

Từ (1) và (2) suy ra \(\widehat{ABC}=\widehat{EDC}\)(đpcm)

c) Ta có: BA=BE(gt)

nên B nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng)(3)

Ta có: DA=DE(cmt)

nên D nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng)(4)

Từ (3) và (4) suy ra BD là đường trung trực của AE

hay BD\(\perp\)AE(đpcm)

23 tháng 11 2016

Ta có hình vẽ:

A B C D E H

a) Vì BD là phân giác của ABC nên ABD = CBD

Xét Δ ABD và Δ EBD có:

BA = BE (gt)

ABD = EBD (cmt)

BD là cạnh chung

Do đó, Δ ABD = Δ EBD (c.g.c)

=> AD = DE (2 cạnh tương ứng) (đpcm)

b) Δ ABD = Δ EBD (câu a) => BAD = BED = 90o (2 góc tương ứng)

=> Δ DEC vuông tại E

Δ ABC vuông tại A có: ABC + C = 90o (1)

Δ CED vuông tại E có: EDC + C = 90o (2)

Từ (1) và (2) => ABC = EDC (đpcm)

c) Gọi giao điểm của AE và BD là H

Xét Δ ABH và Δ EBH có:

AB = BE (gt)

ABH = EBH (câu a)

BH là cạnh chung

Do đó, Δ ABH = Δ EBH (c.g.c)

=> BHA = BHE (2 góc tương ứng)

Mà BHA + BHE = 180o (kề bù) nên BHA = BHE = 90o

=> \(BH\perp AE\) hay \(BD\perp AE\left(đpcm\right)\)

5 tháng 12 2016

học ngu vl

bucminh

10 tháng 10 2017

B A D C E

a) Xét tam gics BAD và BED ta có:

BD là cạnh chung (gt)

AB=AE (gt)

Góc ABD=góc DBC ( vid BD là phân giác của gốc B)

=> Tam giác BAD=tam gics BED (c.g.c)

=>AD=DE ( 2 cạnh tương ứng)

=> Tam giác BAD= tam giác BED

=> góc BAD=BED(2 góc tương ứng)

=>BED=BAD=90*

Xét tam giác ABC và EDC ta cosL'

BAC=DEC=90*

góc C chung

=> tam giác ABC~tam giác EDC (g-g)

=> goác ABC=EDC

b) Xét tam giác ABE ta có:

AB=BE

=> tam giác ABE cân tại B

mà BD là tia phân giác của góc B

=> BD là đường cao

=> BD vuông góc vs AE

28 tháng 11 2017

g-g là j

*Tự vẽ hình

a) Xét tam giác ABD và EBD có :

\(\widehat{ABD}=\widehat{DBE}\left(gt\right)\)

BD : cạnh chung

BA=BE(gt)

=> Tam giác ABD=EBD(c.g.c)

=> AD=DE

và \(\widehat{BAD}=\widehat{DEB}=90^o\)

\(\Rightarrow\widehat{BAD}=\widehat{DEC}=90^o\)

b) Gọi giao điểm của BD và AE là O

Tam giác ABO=EBO(c.g.c) (tự cm)

=> \(\widehat{BOA}=\widehat{BOE}\)

Mà : \(\widehat{BOA}+\widehat{BOE}=180^o\)

\(\Rightarrow\widehat{BOA}=90^o\)

\(\Rightarrow AE\perp BD\left(đccm\right)\)

#H

4 tháng 8 2016

undefined

Xét tam giác BDA và tam giác BDE có

BA=BE (gt)

góc ABD=góc EBD

BD:chung

=> tam giác BDA=tam giác BDE (c.g.c)

=> góc BAD=góc BED

Mà góc BAD=90 độ nên góc BED=90 độ

=> DE vuông góc với BE

b) Vì BA=BE nên tam giác ABE cân tại A

Tam giác ABE cân tại A có BD là đường phân giác nên đồng thời là đường trung trực của cạnh AE

 

25 tháng 4 2020

A B C D E H 1 2 1 2

a) Xét \(\Delta ABD\)và \(\Delta AED\)có :

AB = AE ( gt )

^B1 = ^B2 ( BD là phân giác của ^B )

AD chung 

=> \(\Delta ABD=\Delta AED\left(c.g.c\right)\)

=> \(AD=DE\)( hai cạnh tương ứng )

b) \(\Delta ABD=\Delta AED\)

=> ^BED = ^BAD = 900

c) Nối A với E . Gọi giao điểm của AE và BD là H

Xét \(\Delta ABH\)và \(\Delta EBH\)có :

AB = AE ( gt )

^B1 = ^B2 ( BD là phân giác của ^B )

AH chung 

=> \(\Delta ABH=\Delta EBH\left(c.g.c\right)\)

=> ^H1 = ^H2 ( hai cạnh tương ứng ) ( 1 )

^H1 + ^H2 = 1800 ( kề bù ) ( 2 )

Từ ( 1 ) và ( 2 ) => ^H1 = ^H2 = 1800/2 = 900

=> BD vuông góc với AE ( đpcm )

27 tháng 4 2020

a) Xét ΔABD và ΔEBD có :

BA = BE ( gt )

ABDˆ=EBDˆ ( BD là tia phân giác góc B )

BD chung

=> ΔABD = ΔEBD ( c.g.c )

=> DA = DE ( 1 cạnh tương ứng )

c) Gọi giao điểm của BD và AE là O

Xét ΔABO và ΔEBO có :

BA = BE ( gt )

ABOˆ=EBOˆ( BD là phân giác góc B )

BO chung

=> ΔABO = ΔEBO ( c.g.c )

=> AOBˆ=EOBˆ ( 2 góc tương ứng )

mà AOBˆ+EOBˆ=180o ( kề bù )

=> AOBˆ=EOBˆ=180o: 2=90o

=> AE ⊥ BO hay AE ⊥ BD

14 tháng 12 2022

a: Xét ΔBAD và ΔBED có

BA=BE

góc ABD=góc EBD

BD chung

Do dó: ΔBAD=ΔBED

=>DA=DE
b: Sửa đề: BD vuông góc với AE

Ta có: BA=BE

DA=DE

Do đó; BD là trung trực của AE

=>BD vuông góc với AE

c: Xét ΔBFC có BA/AF=BE/EC

nên AE//CF