Tìm x: 2(x - 5) - x^2 + 25 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a, => x^2+5 = 0
=> x^2=-5 ( vô lí vì x^2 >= 0)
=> ko tồn tại x tm bài toán
b, Vì x^2-5 > x^2-25
Mà (x^2-5): (x^2-25) < 0
=> x^2-5 >0 và x^2-25 <0
=> 5 < x^2 < 25
=> \(x>\sqrt{5}\)hoặc \(x< -\sqrt{5}\) và -5 < x < 5
=> -5 < x < -\(\sqrt{5}\)hoặc \(\sqrt{5}\)< x < 5
k mk nha

a) (x - 3)2 - 5.(x - 2) + 5 = 0.
<=> x^2 - 6x + 9 - 5x + 10 + 5 = 0
<=> x^2 - 11x + 24 = 0
<=> (x-3)(x-8)=0
<=> x = 3 hoặc x = 8

đăng kí hộ
https://www.youtube.com/channel/UCT23clmdY5azigRNMRDxGfw
a) \(\left(x^2+5\right).\left(x^2-25\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2+5=0\\x^2-25=0\end{cases}\Rightarrow\orbr{\begin{cases}x^2=-5\left(vl\right)\\x^2=25\end{cases}\Rightarrow}\orbr{\begin{cases}\\x=\pm5\end{cases}}}\)
b) \(\left(x^2-5\right)\left(x^2-25\right)< 0\)
\(\Rightarrow\left(x^2-5\right)\)và \(\left(x^2-25\right)\)trái dấu
Vì \(\left(x^2-5\right)>\left(x^2-25\right)\)
\(\Rightarrow\hept{\begin{cases}x^2-5>0\\x^2-25< 25\end{cases}\Rightarrow\hept{\begin{cases}x^2>5\\x^2< 50\end{cases}}}\)
\(\Rightarrow5< x^2< 50\)
\(\Rightarrow x^2\in\left\{0;1;4;9;16;25;36;49\right\}\)
\(\Rightarrow x\in\left\{0;\pm1;\pm2;\pm3;\pm4;\pm5;\pm6;\pm7\right\}\)
c) \(\left(x-2\right)\left(x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}}\)
các câu còn lại lm tương tự nhé!! hok tốt!!

a, (x2+5).(x2-25)=0
trường hợp 1(+):
x2+5=0
x2=0-5
x2=-5
không có giá trị nguyên nào
trường hợp 2
x2-25=0
x2=0+25
x2=25
x=5
vậy x =5
câu b làm tương tự nha. thông cảm

a) \(\left(x^2+5\right)\left(x^2-25\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+5=0\\x^2-25=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x\in\varnothing\\x=5\end{cases}}\)\(\Rightarrow x=5\)
b) \(\left(x^2-5\right)\left(x^2-25\right)< 0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-5< 0\\x^2-25< 0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x< \sqrt{5}\\x< 5\end{cases}}\)
c) \(\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)
Câu (d) và (e) bạn làm tương tự (a) và (b) nhé
a, \(\left(x^2+5\right)\left(x^2-25\right)=0\)= 0
⇒[\(x^2\)
+5=0x\(^2\)+25=0⇒[\(x^2\)
=−5(loại)\(x^2\)=−25(loại)⇒[x2+5=0x2+25=0⇒[x2=−5(loại)x2=−25(loại)
Vậy \(x\in\varnothing\)
b, \(\left(x^2-5\right)\left(x^2-25\right)\) < 0
<=> \(x^2\)- 5 và \(x^2\)- 25 trái dấu
Ta thấy \(x^2\) - 5 > \(x^2\) - 25 nên {\(x^2\)
−5>0\(x^2\)
−25<0{x2−5>0x2−25<0 <=> x < 5
c, (x - 2)(x + 1) = 0
⇒[x−2=0x+1=0⇒[x=2x

\(\left(x^2-25\right)^2-\left(x+5\right)^2=0\)
\(\Leftrightarrow\left[x^2-5^2\right]^2-\left(x+5\right)^2=0\)
\(\Leftrightarrow\left[\left(x+5\right)\left(x-5\right)\right]^2-\left(x+5\right)^2=0\)
\(\Leftrightarrow\left(x+5\right)^2\left(x-5\right)^2-\left(x+5\right)^2=0\)
\(\Leftrightarrow\left(x+5\right)^2\left[\left(x-5\right)^2-1\right]=0\)
\(\Leftrightarrow\left(x+5\right)^2\left[\left(x-5\right)+1\right]\left[\left(x-5\right)-1\right]=0\)
\(\Leftrightarrow\left(x+5\right)^2\left(x-4\right)\left(x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x+5\right)^2=0\\x-4=0\\x-6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\x=4\\x=6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=4\\x=6\end{matrix}\right.\)
Vậy: \(S=\left\{-5;6;4\right\}\)
Ta có ( x2 - 25 )2 - ( x + 5 )2 = 0
Vì ( x2 - 25 )2 ≥ 0 ; ( x + 5 )2 ≥ 0
⇒ ( x2 - 25 )2 - ( x + 5 )2 ≥ 0
Dấu " = " xảy ra khi
\(\left[{}\begin{matrix}\left(x^2-25\right)^2=0\\\left(x+5\right)^2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\pm5\\x=-5\end{matrix}\right.\Rightarrow x=-5\)
Vậy x = 5

Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề và hỗ trợ bạn tốt hơn nhé.

a: =>2x(x+4)=0
=>x=0 hoặc x=-4
b: =>(x-5)(2x+10)=0
=>x=5 hoặc x=-5
a: =>2x(x+4)=0
=>x=0 hoặc x=-4
b: =>(x-5)(2x+10)=0
=>x=5 hoặc x=-5
2(\(x\) - 5) - \(x^2\) + 25 = 0
2\(x\) - 10 - \(x^2\) + 25 = 0
-(\(x^2\) - 2\(x\) + 1) + (- 9 + 25) = 0
-(\(x-1\))\(^2\) + 16 = 0
(\(x-1\))\(^2\) = 16
\(\left[\begin{array}{l}x-1=-4\\ x-1=4\end{array}\right.\)
\(\left[\begin{array}{l}x=-4+1\\ x=4+1\end{array}\right.\)
\(\left[\begin{array}{l}x=-3\\ x=5\end{array}\right.\)
Vậy \(x\) ∈ {-3; 5}
\(2\left(x-5\right)-x^2+25=0\)
\(2\left(x-5\right)-\left(x^2-25\right)=0\)
\(2\left(x-5\right)-\left(x-5\right)\left(x+5\right)=0\)
\(\left(x-5\right)\left(2-x-5\right)=0\)
\(\left(x-5\right)\left(-x-3\right)=0\)
\(\left[\begin{array}{l}x-5=0\\ -x-3=0\end{array}\right.\)
\(\left[\begin{array}{l}x=5\\ x=-3\end{array}\right.\)
Vậy \(x=5;x=-3\)