K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Phương trình tương đương với mặt cầu \(\left(\right. x + \frac{1}{2} \left.\right)^{2} + \left(\right. y + \frac{1}{2} \left.\right)^{2} + \left(\right. z + \frac{1}{2} \left.\right)^{2} = \frac{15}{4}\)

Vì vậy có vô số nghiệm(số hữu tỉ, số vô tỉ đều có)

mình giải thích bạn hỉu chưa


15 tháng 7 2017

cộng 3 đẳng thức , ta được :

x . ( x + y + z ) + y . ( x + y + z ) + z . ( x + y + z ) = ( -5 ) + 9 + 5

( x + y + z ) . ( x + y + z ) = 9

( x + y + z )2 = 32 hoặc ( x + y + z )2 = ( -3 )2

=> \(\orbr{\begin{cases}x+y+z=3\\x+y+z=-3\end{cases}}\)

nếu x + y + z = 3 thì :

x . ( x + y + z ) = -5

x . 3 = -5

x = \(\frac{-5}{3}\)

y . ( x + y + z ) = 9

y . 3 = 9

y = 3

z . ( x + y + z ) = 5

z . 3 = 5

z = \(\frac{5}{3}\)

nếu x + y + z = -3 thì :

x . ( x + y + z ) = -5

x . ( -3 ) = ( -5 )

x = \(\frac{5}{3}\)

y . ( x + y + z ) = 9

y . ( -3 ) = 9

y = ( -3 )

z . ( x + y + z ) = 5

z . ( -3 ) = 5

z = \(\frac{-5}{3}\)

Vậy ...

5 tháng 7 2017

Ace Legona giúp vs ạ bài 1 thui cx đc

15 tháng 8 2017

Ta có :*x(x+y+z) =   - 5 (1)

* y(x+y+z) = 9 (2)

* z(x+y+z)=5 (3)

Từ (1) ; (2) và (3) , ta có :

x(x+y+z) + y(x+y+z) + z(x+y+z) = -5 + 9 + 5

Dựa vào tính chất phân phối của phép nhân đối với phép cộng , ta có :

 (x+y+z) . (x+y+z) = 9 

\(\Rightarrow\left(x+y+z\right)^2=9\)

\(\Rightarrow x+y+z=3\) hoặc x +y+z=-3

\(-\) TRƯỜNG HỢP  : x+y+z =3 :

 * từ (1) có :  x(x+y+z=3 ) = -5   và        x+y+z=3 => x = \(\frac{x\left(x+y+z\right)}{x+y+z}=-\frac{5}{3}\)

* từ (2) có : y(x+y+z) =9   và x+y+z=3 \(\Rightarrow y=\frac{y\left(x+y+z\right)}{x+y+z}=\frac{9}{3}=3\)

* từ (3) có : z(x+y+z) = 5 và x+y+z=3 \(\Rightarrow z=\frac{z\left(x+y+z\right)}{x+y+z}=\frac{5}{3}\)

\(-\) TRƯỜNG HỢP x +y+z=-3 :

* từ (1) có  x(x+y+z=3 ) = -5   và        x+y+z=-3 \(\Rightarrow x=\frac{x\left(x+y+z\right)}{x+y+z}=\frac{-5}{-3}=\frac{5}{3}\)

* từ (2) có : y(x+y+z) =9   và x+y+z=-3 \(\Rightarrow y=\frac{y\left(x+y+z\right)}{x+y+z}=\frac{9}{-3}=-3\)

 * từ (3) có : z(x+y+z) =5   và x+y+z=-3 \(\Rightarrow z=\frac{z\left(x+y+z\right)}{x+y+z}=\frac{5}{-3}\)

Đảm bảo đúng 100% . K MIK NHA MN!

15 tháng 8 2017

Đặt

\(x.\left(x+y+z\right)=-5\) (1)

\(y.\left(x+y+z\right)=9\)      (2)

\(x.\left(x+y+z\right)=5\)      (3)

Cộng (1);(2);(3) với nhau ta được 

\(x.\left(x+y+z\right)+y.\left(x+y+z\right)+z.\left(x+y+z\right)=\left(x+y+z\right).\left(x+y+z\right)\)

\(=\left(x+y+z\right)^2=\left(-5\right)+9+5=9=3^2=\left(-3\right)^2\)

Suy ra \(x+y+z=3\)hoặc \(x+y+z=-3\)

Thay \(x+y+z=3\)vào (1) ta được \(x.3=-5\Rightarrow x=-\frac{3}{5}\)

Thay\(x+y+z=3\)vào (2) ta được \(y.3=9\Rightarrow y=3\)

Thay \(x+y+z=3\)vào (3) ta được \(z.3=5\Rightarrow z=\frac{3}{5}\)

Ta có \(\left(x;y;z\right)=\left(-\frac{3}{5};3;\frac{3}{5}\right)\)

Thay \(x+y+z=-3\)vào (1) ta được \(x.\left(-3\right)=05\Rightarrow x=\frac{3}{5}\)

Thay \(x+y+z=-3\)vào (2) ta được \(y.\left(-3\right)=9\Rightarrow y=-3\)

Thay \(x+y+z=-3\)vào (3) ta được \(z.\left(-3\right)=5\Rightarrow x=-\frac{3}{5}\)

Ta có \(\left(x;y;z\right)=\left(\frac{3}{5};-3;-\frac{3}{5}\right)\)

Vậy các cặp \(\left(x;y;z\right)\)thỏa mãn là : \(\left(-\frac{3}{5};3;\frac{3}{5}\right)\)và \(\left(\frac{3}{5};-3;-\frac{3}{5}\right)\)

Đặt \(\dfrac{x}{2019}=\dfrac{y}{2020}=\dfrac{z}{2021}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=2019k\\y=2020k\\z=2021k\end{matrix}\right.\)

Ta có : \(4.\left(x-y\right).\left(y-z\right)=4.\left(2019k-2020k\right).\left(2020k-2021k\right)=4.\left(-k\right).\left(-k\right)=4k^2\)

Lại có : \(\left(z-x\right)^2=\left(2021k-2019k\right)^2=4k^2\)

Do đó : \(4.\left(x-y\right).\left(y-z\right)=\left(z-x\right)^2\)

27 tháng 8 2020

Theo giả thiết ta có \(\frac{1}{x}+\frac{1}{y}=\frac{1}{z}\Leftrightarrow\frac{x+y}{xy}=\frac{1}{z}\Leftrightarrow xz+yz=xy\)

\(\Leftrightarrow xy-xz-yz=0\Leftrightarrow x^2+y^2+z^2+xy-xz-yz=x^2+y^2+z^2\)

\(\Leftrightarrow\left(x+y-z\right)^2=x^2+y^2+z^2\)

\(\Leftrightarrow\sqrt{x^2+y^2+z^2}=\left|x+y-z\right|\)

Mà x, y, z là các số hữu tỉ nên \(\left|x+y-z\right|\)là số hữu tỉ

Vậy \(\sqrt{x^2+y^2+z^2}\)là số hữu tỉ (đpcm)

13 tháng 3 2018

\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{4}=\frac{z}{5}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\frac{x}{8}=\frac{y}{12}\\\frac{y}{12}=\frac{z}{15}\end{cases}}\)\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

\(\Rightarrow\frac{x^2}{64}=\frac{y^2}{144}=\frac{z^2}{225}=\frac{x^2-y^2}{64-144}=\frac{-16}{-80}=\frac{1}{5}\)

\(\Rightarrow\hept{\begin{cases}x^2=\frac{1}{5}.64=12,8\\y^2=\frac{1}{5}.144=28,8\\z^2=\frac{1}{5}.225=45\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\pm\sqrt{12,8}\\y=\pm\sqrt{28,8}\\z=\pm\sqrt{45}\end{cases}}\)

Với \(x=\sqrt{12,8}\Rightarrow\hept{\begin{cases}y=\sqrt{28,8}\\z=\sqrt{45}\end{cases}}\)

Với \(x=-\sqrt{12,8}\Rightarrow\hept{\begin{cases}y=-\sqrt{28,8}\\z=-\sqrt{45}\end{cases}}\)

21 tháng 1

????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????

23 tháng 10 2016

Bài 1:

Giải:

Ta có: \(3\left(x-1\right)=2\left(y-2\right)=3\left(z-3\right)\)

\(\Rightarrow\frac{x-1}{\frac{1}{3}}=\frac{y-2}{\frac{1}{2}}=\frac{z-3}{\frac{1}{3}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x-1}{\frac{1}{3}}=\frac{y-2}{\frac{1}{2}}=\frac{z-3}{\frac{1}{3}}=\frac{2x-2}{\frac{2}{3}}=\frac{3y-6}{\frac{3}{2}}=\frac{z-3}{\frac{1}{3}}=\frac{2x-2+3y-6+z-3}{\frac{2}{3}+\frac{3}{2}+\frac{1}{3}}=\frac{\left(2x+3y+z\right)-\left(2+6+3\right)}{\frac{5}{2}}\)

\(=\frac{50-11}{\frac{5}{2}}=\frac{39}{\frac{5}{2}}=39.\frac{2}{5}=15,6\)

+) \(\frac{x-1}{\frac{1}{3}}=15,6\Rightarrow x-1=5,2\Rightarrow x=6,2\)

+) \(\frac{y-2}{\frac{1}{2}}=15,6\Rightarrow y-2=7,8\Rightarrow y=9,8\)

+) \(\frac{z-3}{\frac{1}{3}}=15,6\Rightarrow z-3=5,2\Rightarrow z=8,2\)

Vậy bộ số \(\left(x;y;z\right)\)\(\left(6,2;9,8;8,2\right)\)

27 tháng 10 2016

Vậy còn mấy câu kja hì sao pạn???