K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

QT
Quoc Tran Anh Le
Giáo viên
28 tháng 8

a) Áp dụng định lí pytago vào ΔAHB vuông tại H, ta được

\(AB^2=AH^2+BH^2\)

Áp dụng định lí pytago vào ΔAHC vuông tại H, ta được

\(AC^2=AH^2+CH^2\)

Ta có: \(AB^2+AC^2=BH^2+CH^2+AH^2+AH^2=BH^2+CH^2+2\cdot AH^2\)

b) Áp dụng định lí pytago vào ΔABH vuông tại H, ta được

\(AB^2=AH^2+BH^2\)

Áp dụng định lí pytago vào ΔACH vuông tại H, ta được

\(AC^2=AH^2+HC^2\)

Ta có: \(AB^2-AC^2=AH^2+BH^2-AH^2-CH^2=BH^2-CH^2\)(1)

Áp dụng định lí pytago vào ΔEHB vuông tại H, ta được

\(EB^2=EH^2+HB^2\)

Áp dụng định lí pytago vào ΔEHC vuông tại H, ta được

\(EC^2=EH^2+HC^2\)

Ta có: \(EB^2-EC^2=EH^2+BH^2-EH^2-CH^2=BH^2-CH^2\)(2)

Từ (1) và (2) suy ra \(AB^2-AC^2=EB^2-EC^2\)(đpcm)

4 tháng 2 2020

a)

+ Xét \(\Delta ABH\) vuông tại \(H\left(gt\right)\) có:

\(AB^2=AH^2+BH^2\) (định lí Py - ta - go) (1).

+ Xét \(\Delta ACH\) vuông tại \(H\left(gt\right)\) có:

\(AC^2=AH^2+CH^2\) (định lí Py - ta - go) (2).

Từ (1) và (2) \(\Rightarrow AB^2+AC^2=\left(AH^2+AH^2\right)+\left(BH^2+CH^2\right)\)

\(\Rightarrow AB^2+AC^2=AH^2+AH^2+BH^2+CH^2\)

\(\Rightarrow AB^2+AC^2=2AH^2+BH^2+CH^2\)

Hay \(AB^2+AC^2=BH^2+CH^2+2AH^2\left(đpcm\right).\)

Chúc bạn học tốt!

23 tháng 1 2017

Tự vẽ hình.

Áp dụng định lý pytago vào \(\Delta\)ACH vuông tại H và \(\Delta\)BCH vuông tại H có:

AC2 = CH2 + AH2 (1)

BC2 = CH2 + BH2 (2)

Vì AB = AC nên thay vào (1) ta đc:

AB2 = CH2 + AH2 (3)

Cộng vế (1); (2) và (3) ta đc:

AB2 + AC2 + BC2 = BH2 + 2AH2 + 3CH2

\(\rightarrow\) đpcm.

20 tháng 9 2021
a) tam giác ABH là tam giác vuông nên AB^2 - BH^2 = AH (1) chứng minh tương tự với tam giác ACH suy ra AC^2 - CH^2 = AH^2 (2) Từ (1) và (2) ta suy ra AB^2 - BH^2 = AC^2 - CH^2 câu b mình chưa biết làm nha :))
21 tháng 7 2019

\(\hept{\begin{cases}AB^2-BH^2=AH^2\\AC^2-CH^2=AH^2\end{cases}\Rightarrow}AB^2-BH^2=AC^2-CH^2\Rightarrow AB^2+CH^2=AC^2+BH^2\)

19 tháng 2 2020

Hình bạn tự vẽ nhé

a) Áp dụng định lý Pytago vào \(\Delta AHB\)vuông tại H ta được:

\(AB^2=BH^2+AH^2\Rightarrow AH^2=AB^2-BH^2\)(1)

Áp dụng định lý Pytago vào \(\Delta HAC\)vuông tại H ta được:

\(AC^2=AH^2+CH^2\Rightarrow AH^2=AC^2-CH^2\)(2)

Từ (1) và (2) \(\Rightarrow AC^2-CH^2=AB^2-BH^2\)

\(\Leftrightarrow AB^2+CH^2=AC^2+BH^2\)(ĐCCM)

b) Áp dụng định lý Pytago vào\(\Delta ABC\) vuông tại A ta được:

\(BC^2=AC^2+AB^2\)\(=\left(AH^2+CH^2\right)+\left(AH^2+BH^2\right)=2AH^2+CH^2+BH^2\)(ĐCCM)

ΔAHB vuông tại H

=>AB^2=AH^2+HB^2

ΔAHC vuông tại H

=>AC^2=AH^2+CH^2

AB^2-AC^2

=BH^2+AH^2-AH^2-CH^2

=BH^2-CH^2