Tìm STN n biết:
5^n + 5^n+2 = 650
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5^n+5^{n+2}=650\)
= \(5^n+5^{n+2}=625+25\)
= \(5^n+5^{n+2}=5^4+5^2\)
= \(n+n+2=6\)
= \(2n+2=6\)
\(2n=6-2\)
2n =4
\(n=4:2\)
\(n=2\)
\(5^n+5^{n+2}=650\)
\(5^n+5^n\cdot5^2=650\)
\(5^n\left(1+25\right)=650\)
\(5^n\cdot26=650\)
\(5^n=650:26\)
\(5^n=25\)
\(5^n=5^2\)
\(\Rightarrow n=2\)
\(5^n+5^{n+2}=650\)
\(\Leftrightarrow5^n+5^n.5^2=650\)
\(\Leftrightarrow5^n\left(1+5^2\right)=650\)
\(\Leftrightarrow5^n.26=650\)
\(\Leftrightarrow5^n=\frac{650}{26}=25\)
\(\Leftrightarrow5^n=5^2\)
\(\Leftrightarrow n=2\)
5n+5n+2=650
5n(1+52) = 650
5n(1+25) = 650
5n= 650:26
5^n= 25
5^n= 5^2
=> n=2
a)
\(A=5^{50}-5^{48}+5^{46}-5^{44}+...+5^6-5^4+5^2-1\)
\(5^2.A=5^2.\left(5^{50}-5^{48}+5^{46}-5^{44}+...+5^6-5^4+5^2-1\right)\)
\(25A=5^{52}-5^{50}+5^{48}-5^{46}+...+5^8-5^6+5^4-5^2\)
\(A+25A=\left(5^{50}-5^{48}+5^{46}-5^{44}+...+5^6-5^4+5^2-1\right)+\left(5^{52}-5^{50}+5^{48}-5^{46}+...+5^8-5^6+5^4-5^2\right)\)
\(26A=5^{22}-1\)
\(A=\dfrac{5^{22}-1}{26}\).
b)
\(26A+1=5^n\)
\(\Leftrightarrow\left(5^{52}-1\right)+1=5^n\)
\(\Leftrightarrow5^{52}=5^n\)
\(\Rightarrow n=52\).
c)
\(A=\left(5^{50}-5^{48}\right)+\left(5^{46}-5^{44}\right)+...+\left(5^6-5^4\right)+\left(5^2-1\right)\)
\(=5^{48}.\left(5^2-1\right)+5^{44}.\left(5^2-1\right)+...+5^4.\left(5^2-1\right)+1.\left(5^2-1\right)\)
\(=5^2.24.\left(5^{46}+5^{42}+...+5^2\right)+24\)
\(=25.4.6.\left(5^{46}+5^{42}+...+5^2\right)+24\)
\(=100.6.\left(5^{46}+5^{42}+...+5^2\right)+24⋮100\)
\(\Rightarrow A⋮100\).
5n+5n.52=650
5n(1+52)=650
5n.26=650
=>5n=650:26
=>5n=25=52
=>n=2
\(5^n+5^{n+2}=650\Rightarrow5^n\left(1+5^2\right)=650\Rightarrow5^n.26=650\Rightarrow5^n=25\)
\(\Leftrightarrow5^n=5^2\Leftrightarrow n=2\)
a.
\(5^n+5^{n+2}=650\)
\(5^n\left(1+5^2\right)=650\)
\(5^n\left(1+25\right)=650\)
\(5^n\cdot26=650\)
\(5^n=650:26\)
\(5^n=25\)
\(5^n=5^2\Rightarrow n=2\)
b.
\(3^{n+3}+5\cdot3^n=864\)
\(3^n\left(3^3+5\right)=864\)
\(3^n\left(27+5\right)=864\)
\(3^n\cdot32=864\)
\(3^n=864:32\)
\(3^n=27\)
\(3^n=3^3\Rightarrow n=3\)
a) 5n + 5n+2 = 650
=> 5n + 5n . 52 = 650
=> 5n (1 + 52) = 650
=> 5n . 26 = 650
=> 5n = 25
=> n = 2
b) 3n+ 3 + 5.3n = 864
=> 3n . 33 + 5.3n = 864
=> 3n(33 + 5) = 864
=> 3n . 32 = 864
=> 3n = 27
=> n = 3
a) 32n+1=243 b)32/(2n)=8
32n+1=35 32/(2n)=32/4
=>2n+1=5 => 2n =4
2n =5-1 n =4:2
2n =4 n =2
n =2
Câu c ko bík làm
a) 32n+1 = 243
=> 32n+1 = 35
=> 2n + 1 = 5
=> 2n = 5 - 1
=> 2n = 4
=> n = 4 : 2
=> n = 2
Vậy n = 2
b) \(\frac{32}{2n}=8\)
=> 2n = 32 : 8
=> 2n = 4
=> n = 4 : 2
=> n = 2
Vậy n = 2
c) 5n + 5n+2 = 650
=> 5n . 1 + 5n . 52 = 650
=> 5n . (1 + 52) = 650
=> 5n . (1 + 25) = 650
=> 5n . 26 = 650
=> 5n = 650 : 26
=> 5n = 25
=> 5n = 52
=> n = 2
Vậy n = 2
\(5^{n}\) + \(5^{n+2}\) = 650
\(5^{n}\).(1 + 5\(^2\)) = 650
5\(^{n}\) .(1+ 25) = 650
5\(^{n}\).26 = 650
5\(^{n}\) = 650 : 26
5\(^{n}\) = 25
\(5^{n}\) = 5\(^2\)
n = 2
Vậy n = 2
2