Min A = \(3(x-5)^4+7\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



A = |x - 3| + |x - 5| + |x-7| có GTNN
<=> Mỗi số hạng trong tổng trên có GTNN.
Vì giá trị tuyệt đối của 1 số \(\ge\) 0 nên xét các trường hợp :
- Với |x - 3| có GTNN <=> |x - 3| = 0 => x = 3. Do đó |x - 5| = |3 - 5| = 2 ; |x - 7| = |3 - 7| = 4
.Khi đó A = 0 + 2 + 4 = 6
- Với |x - 5| vó GTNN <=> |x - 5| = 0 => x = 5. Do đó |x - 3| = |5 - 3| = 2 ; |x - 7| = |5 - 7| = 2
. Khi đó A = 0 + 2 + 2 = 4
- Với |x - 7| có GTNN <=> |x - 7| = 0 => x = 7. Do đó |x - 3| = |7 - 3| = 4 ; |x - 5| = |7 - 5| = 2
Khi đó A = 0 + 4 + 2 = 6
Trong các trường hợp trên, chọn GTNN của A là 4.
Vậy x = 5 thì A có GTNN

1: \(=3\left(x+\dfrac{2}{3}\sqrt{x}+\dfrac{1}{3}\right)\)
\(=3\left(x+2\cdot\sqrt{x}\cdot\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{2}{9}\right)\)
\(=3\left(\sqrt{x}+\dfrac{1}{3}\right)^2+\dfrac{2}{3}>=3\cdot\dfrac{1}{9}+\dfrac{2}{3}=1\)
Dấu '=' xảy ra khi x=0
2: \(=x+3\sqrt{x}+\dfrac{9}{4}-\dfrac{21}{4}=\left(\sqrt{x}+\dfrac{3}{2}\right)^2-\dfrac{21}{4}>=-3\)
Dấu '=' xảy ra khi x=0
3: \(A=-2x-3\sqrt{x}+2< =2\)
Dấu '=' xảy ra khi x=0
5: \(=x-2\sqrt{x}+1+1=\left(\sqrt{x}-1\right)^2+1>=1\)
Dấu '=' xảy ra khi x=1

\(C=\left(23-x\right)\left(3x+5\right)+13\)
\(=69x+115-3x^2-5x+13\)
\(=-3x^2+64x+128\)
\(=-3\left(x^2-\dfrac{64}{3}x+\dfrac{1024}{9}\right)+\dfrac{1408}{3}\)
\(=-3\left(x-\dfrac{32}{3}\right)^2+\dfrac{1408}{3}\le\dfrac{1408}{3}\)
Vậy \(Max_C=\dfrac{1408}{3}\)
Để \(C=\dfrac{1408}{3}\) thì \(x-\dfrac{32}{3}=0\Rightarrow x=\dfrac{32}{3}\)
d, \(D=\left(2-3x\right)\left(3x+5\right)-7\)
\(=6x+10-9x^2-15x-7\)
\(=-9x^2-9x+3\)
\(=-9\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{21}{4}\)
\(=-9\left(x-\dfrac{1}{2}\right)^2+\dfrac{21}{4}\le\dfrac{21}{4}\)
Vậy \(Max_D=\dfrac{21}{4}\) khi \(x-\dfrac{1}{2}=0\Rightarrow x=\dfrac{1}{2}\)

Với mọi a;b ta có: \(\left(a-b\right)^2\ge0\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow2a^2+2b^2\ge a^2+2ab+b^2\)
\(\Leftrightarrow a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\)
Dấu "=" xảy ra khi và chỉ khi \(a=b\)
Áp dụng:
\(A=\left(x+3\right)^4+\left(7-x\right)^4\ge\dfrac{1}{2}\left[\left(x+3\right)^2+\left(7-x\right)^2\right]^2\)
Tiếp tục áp dụng BĐT ban đầu trong 2 số hạng trong ngoặc vuông:
\(\Rightarrow A\ge\dfrac{1}{2}\left[\dfrac{1}{2}\left(x+3+7-x\right)^2\right]^2=1250\)
Dấu "=" xảy ra khi \(x+3=7-x\Rightarrow x=2\)
Vậy \(A_{min}=1250\) khi \(x=2\)
Không tồn tại A max

Lời giải:
$A=x(x-3)(x-4)(x-7)=[x(x-7)][(x-3)(x-4)]$
$=(x^2-7x)(x^2-7x+12)$
$=a(a+12)$ (đặt $x^2-7x=a$)
$=a^2+12a=(a+6)^2-36=(x^2-7x+6)^2-36\geq 0-36=-36$
Vậy $A_{\min}=-36$. Giá trị này đạt tại $x^2-7x+6=0$
$\Leftrightarrow (x-1)(x-6)=0$
$\Leftrightarrow x=1$ hoặc $x=6$
Ta có: \(\left(x-5\right)^4\ge0\forall x\)
=>\(3\left(x-5\right)^4\ge0\forall x\)
=>\(3\left(x-5\right)^4+7\ge7\forall x\)
Dấu '=' xảy ra khi x-5=0
=>x=5
\((x-5)^4\ge0\forall x\)
\(3(x-5)^4\ge0\)
⇒ \(3(x-5)^4\ge7\)
khi \((𝑥-5)^4=0 \iff 𝑥=5\)
vậy A = 7 khi \(x\) = 5