1^2+4^2+7^2+.....+100^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


A = 1*2*3 + 2*3*4 + 3*4*5 ... + 99*100*101
=> 4A = 1*2*3*4 + 2*3*4*4 + 3*4*5*4 + ... +99*100*101*4
=> 4A = 1*2*3*4 + 2*3*4*(5 - 1) + 3*4*5*( 6 - 2) + ... + 99*100*101*(102 - 98)
=> 4A = 1*2*3*4 + 2*3*4*5 - 1*2*3*4 + 3*4*5*6 - 2*3*4*5 + ... + 99*100*101*102 - 98*99*100*101
=> 4A = 99*100*101*102
=> 4A = 101989800
=> A = 25497450

\(A=1+7+7^2+7^3+...+7^{2007}\)
\(7A=7+7^2+7^3+7^4+...+7^{2008}\)
\(7A-A=\left(7+7^2+7^3+7^4+...+7^{2008}\right)-\left(1+7+7^2+7^3+...+7^{2007}\right)\)
\(6A=7^{2008}-1\)
\(A=\frac{7^{2008}-1}{6}\)
Tương tự, \(B=\frac{4^{101}-1}{3},C=\frac{3^{101}-1}{2}\).
\(D=7+7^3+7^5+7^7+...+7^{99}\)
\(7^2.D=7^3+7^5+7^7+7^9+...+7^{101}\)
\(\left(7^2-1\right)D=\left(7^3+7^5+7^7+7^9+...+7^{101}\right)-\left(7+7^3+7^5+7^7+...+7^{99}\right)\)
\(48D=7^{101}-7\)
\(D=\frac{7^{101}-7}{48}\)
Tương tự, \(E=\frac{2^{9011}-2}{3}\)

\(\dfrac{2}{1\times4}+\dfrac{2}{4\times7}+\dfrac{2}{7\times10}+\cdot\cdot\cdot+\dfrac{2}{97\times100}\)
\(=\dfrac{2}{3}\times\left(\dfrac{3}{1\times4}+\dfrac{3}{4\times7}+\dfrac{3}{7\times10}+\cdot\cdot\cdot+\dfrac{3}{97\times100}\right)\)
\(=\dfrac{2}{3}\times\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\cdot\cdot\cdot+\dfrac{1}{97}-\dfrac{1}{100}\right)\)
\(=\dfrac{2}{3}\times\left(1-\dfrac{1}{100}\right)\)
\(=\dfrac{2}{3}\times\dfrac{99}{100}\)
\(=\dfrac{33}{50}\)
#\(Toru\)

Ta đặt biểu thức là :
A = 2/1 x 4 + 2/4 x 7 + 2/7 x 10 + ... + 2/97 x 100
A = 2 - 2/4 + 2/4 - 2/7 + 2/7 - 2/10 + ... + 2/97 - 2/100
A = 2 - 2 /100
A = 99/50

1+(-2)+3+(-4)+5+(-6)+7+(-8)+9+(-10)+11+(-12)
=(1+3+5+7+9+11)+[(-2)+(-4)+(-6)+(-8)+(-10)+(-12)]
= 36+-42
=-6
(-1)+2+(-3)+4+(-5)+6+(-7)+8+(-9)+10+(-11)+12
=[(-1)+(-3)+(-5)+(-7)+(-9)+(-11)]+(2+4+6+8+10+12)
=(-36)+42
=6

Mình làm mẫu 1 bài rùi bạn tự giải những bài còn lại nha
1, 7A = 7+7^2+7^3+....+7^2008
6A = 7A - A = (7+7^2+7^3+....+7^2008)-(1+7+7^2+....+7^2007) = 7^2008-1
=> A = (7^2008-1)/6
Tk mk nha
\(A=1+7+7^2+7^3+...+7^{2007}\)
\(\Rightarrow7A=7+7^2+7^3+7^4+...+7^{2008}\)
\(\Rightarrow7A-A=\left(7+7^2+7^3+...+7^{2008}\right)-\left(1+7+7^2+...+7^{2007}\right)\)
\(\Rightarrow6A=7^{2008}-1\)
\(\Rightarrow A=\frac{7^{2008}-1}{6}\)

A = 1 . 3 + 3 . 5 + 5 . 7 + ... + 49 . 51
= 1 . 51
= 51
B = 2 . 4 + 4 . 6 + 6 . 8 + ... + 98 . 100
= 2 . 100
= 200
C = 1 . 4 + 4 . 7 + 7 . 10 + ... + 301 . 304
= 1 . 304
= 304
D = 1 + 1 . 1! + 2 . 2! + 3 . 3! + ... + 100 . 100!
= 1 . 100
= 100
E = 22 + 42 + ... + ( 2n )2
= 22 . ( 2n )2
= 2n4
116,161
116 161