giải phương trình sau: \(\sqrt{x^2+12}=3x-5+\sqrt{x^2+5}\) mình cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


1/ ĐKXĐ: $4x^2-4x-11\geq 0$
PT $\Leftrightarrow \sqrt{4x^2-4x-11}=2(4x^2-4x-11)-6$
$\Leftrightarrow a=2a^2-6$ (đặt $\sqrt{4x^2-4x-11}=a, a\geq 0$)
$\Leftrightarrow 2a^2-a-6=0$
$\Leftrightarrow (a-2)(2a+3)=0$
Vì $a\geq 0$ nên $a=2$
$\Leftrightarrow \sqrt{4x^2-4x-11}=2$
$\Leftrightarrow 4x^2-4x-11=4$
$\Leftrightarrow 4x^2-4x-15=0$
$\Leftrightarrow (2x-5)(2x+3)=0$
$\Rightarrow x=\frac{5}{2}$ hoặc $x=\frac{-3}{2}$ (tm)
2/ ĐKXĐ: $x\in\mathbb{R}$
PT $\Leftrightarrow \sqrt{3x^2+9x+8}=\frac{1}{3}(3x^2+9x+8)-\frac{14}{3}$
$\Leftrightarrow a=\frac{1}{3}a^2-\frac{14}{3}$ (đặt $\sqrt{3x^2+9x+8}=a, a\geq 0$)
$\Leftrightarrow a^2-3a-14=0$
$\Rightarrow a=\frac{3+\sqrt{65}}{2}$ (do $a\geq 0$)
$\Leftrightarrow 3x^2+9x+8=\frac{37+3\sqrt{65}}{2}$
$\Rightarrow x=\frac{1}{2}(-3\pm \sqrt{23+2\sqrt{65}})$

ĐKXĐ: \(x\ge2\)
\(\dfrac{\left(\sqrt{3x-5}-\sqrt{x-2}\right)\left(\sqrt{3x-5}+\sqrt{x-2}\right)}{\sqrt{3x-5}+\sqrt{x-2}}=\dfrac{2x-3}{3}\)
\(\Leftrightarrow\dfrac{2x-3}{\sqrt{3x-5}+\sqrt{x-2}}=\dfrac{2x-3}{3}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\Rightarrow x=\dfrac{3}{2}\left(ktm\right)\\\sqrt{3x-5}+\sqrt{x-2}=3\left(1\right)\end{matrix}\right.\)
Xét (1)
\(\Leftrightarrow\sqrt{3x-5}-2+\sqrt{x-2}-1=0\)
\(\Leftrightarrow\dfrac{3\left(x-3\right)}{\sqrt{3x-5}+2}+\dfrac{x-3}{\sqrt{x-2}+1}=0\)
\(\Leftrightarrow\left(x-3\right)\left(\dfrac{3}{\sqrt{3x-5}+2}+\dfrac{1}{\sqrt{x-2}+1}\right)=0\)
\(\Leftrightarrow x-3=0\) (do \(\dfrac{3}{\sqrt{3x-5}+2}+\dfrac{1}{\sqrt{x-2}+1}>0;\forall x\ge2\))
\(\Leftrightarrow x=3\)
Vậy pt có nghiệm duy nhất \(x=3\)

ĐK: \(x\in R\)
\(pt\Leftrightarrow\sqrt{x^2+12}-4+3-\sqrt{x^2+5}+6-3x=0\)
\(\Leftrightarrow\dfrac{x^2-4}{\sqrt{x^2+12}+4}+\dfrac{4-x^2}{3+\sqrt{x^2+5}}+6-3x=0\)
\(\Leftrightarrow\left(\dfrac{x+2}{\sqrt{x^2+12}+4}-\dfrac{x+2}{3+\sqrt{x^2+5}}-3\right)\left(x-2\right)=0\left(1\right)\)
Từ phương trình suy ra \(3x-5=\sqrt{x^2+12}-\sqrt{x^2+5}>0\Rightarrow x>\dfrac{5}{3}\)
Ta có: \(\dfrac{x+2}{\sqrt{x^2+12}+4}-\dfrac{x+2}{3+\sqrt{x^2+5}}-3\)
\(=\left(\dfrac{1}{\sqrt{x^2+12}+4}-\dfrac{1}{3+\sqrt{x^2+5}}\right)\left(x+2\right)-3< 0\)
Khi đó \(\left(1\right)\Leftrightarrow x=2\left(tm\right)\)
Vậy phương trình đã cho có nghiệm \(x=2\)

Giải:
\(\sqrt{4 x + 1} - \sqrt{3 x - 2} = \frac{x + 3}{5} , x \geq \frac{2}{3}\)
Chuyển vế và bình phương:
\(\sqrt{4 x + 1} = \frac{x + 3}{5} + \sqrt{3 x - 2}\) \(4 x + 1 = \frac{\left(\right. x + 3 \left.\right)^{2}}{25} + 2 \cdot \frac{x + 3}{5} \sqrt{3 x - 2} + \left(\right. 3 x - 2 \left.\right)\)
Đưa hạng chứa căn sang một phía:
\(x + 3 - \frac{\left(\right. x + 3 \left.\right)^{2}}{25} = 2 \cdot \frac{x + 3}{5} \sqrt{3 x - 2}\) \(\frac{\left(\right. x + 3 \left.\right) \left(\right. 22 - x \left.\right)}{25} = 2 \cdot \frac{x + 3}{5} \sqrt{3 x - 2}\)
Vì \(x \geq \frac{2}{3} \Rightarrow x \neq - 3\), chia cho \(x + 3\) và nhân quy đồng:
\(22 - x = 10 \sqrt{3 x - 2}\)
Bình phương lần nữa:
\(\left(\right.22-x\left.\right)^2=100\left(\right.3x-2\left.\right)\Longrightarrow x^2-344x+684=0\)
⇒x ∈ {2,342}
Kiểm tra với phương trình gốc:
- \(x = 2 : \textrm{ }\textrm{ } \sqrt{9} - \sqrt{4} = 1 = \frac{2 + 3}{5}\) (đúng).
- \(x = 342 : \textrm{ }\textrm{ } 37 - 32 = 5 \neq \frac{345}{5} = 69\) (loại).
Vậy nghiệm duy nhất là : \(x = 2\).
ĐKXĐ: \(x\ge\frac23\)
Ta có: \(\sqrt{4x+1}-\sqrt{3x-2}=\frac{x+3}{5}\)
=>\(\sqrt{4x+1}-3+2-\sqrt{3x-2}=\frac{x+3}{5}-1\)
=>\(\frac{4x+1-9}{\sqrt{4x+1}+3}+\frac{4-3x+2}{2+\sqrt{3x-2}}=\frac{x-2}{5}\)
=>\(\frac{4x-8}{\sqrt{4x+1}+3}+\frac{-3\left(x-2\right)}{\sqrt{3x-2}+2}=\frac{x-2}{5}\)
=>\(\left(x-2\right)\left(\frac{4}{\sqrt{4x+1}+3}-\frac{3}{\sqrt{3x-2}+2}-\frac15\right)=0\)
=>x-2=0
=>x=2(nhận)

1. \(2-\sqrt{\left(3x+1\right)^2}=35\)
<=> \(\left|3x+1\right|=-33\) => pt vô nghiệm
2. \(\sqrt{\left(-2x+1\right)^2}+5=12\)
<=> \(\left|1-2x\right|=12-5\)
<=> \(\left|1-2x\right|=7\)
<=> \(\orbr{\begin{cases}1-2x=7\left(đk:x\le\frac{1}{2}\right)\\2x-1=7\left(đk:x>\frac{1}{2}\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}2x=-6\\2x=8\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-3\left(tm\right)\\x=4\left(tm\right)\end{cases}}\)
Vậy S = {-3; 4}
3. ĐKXĐ: \(\sqrt{x^2-1}\ge0\) <=> \(x^2-1\ge0\) <=> \(x^2\ge1\) <=> \(\orbr{\begin{cases}x\ge1\\x\le1\end{cases}}\)
\(\sqrt{x^2-1}+4=0\) <=> \(\sqrt{x^2-1}=-4\)
=> pt vô nghiệm
4. Đk: \(\hept{\begin{cases}\sqrt{5x+7}\ge0\\\sqrt{x+3}>0\end{cases}}\) <=> \(\hept{\begin{cases}5x+7\ge0\\x+3>0\end{cases}}\) <=> \(\hept{\begin{cases}x\ge-\frac{7}{5}\\x>-3\end{cases}}\) => x \(\ge\)-7/5
Ta có: \(\frac{\sqrt{5x+7}}{\sqrt{x+3}}=4\)
<=> \(\left(\frac{\sqrt{5x+7}}{\sqrt{x+3}}\right)^2=16\)
<=> \(\frac{\left(\sqrt{5x+7}\right)^2}{\left(\sqrt{x+3}\right)^2}=16\)
<=> \(\frac{5x+7}{x+3}=16\)
=> \(5x+7=16\left(x+3\right)\)
<=> \(5x+7=16x+48\)
<=> \(5x-16x=48-7\)
<=> \(-11x=41\)
<=> \(x=-\frac{41}{11}\)ktm
=> pt vô nghiệm

cho mình hỏi hai ý đầu thôi, hai ý sau mình giải ra rồi. Thanks Zero ~
Ta có: \(\sqrt{x^2+12}=3x-5+\sqrt{x^2+5}\)
=>\(3x-5-1+\sqrt{x^2+5}-3=\sqrt{x^2+12}-4\)
=>\(3x-6+\frac{x^2+5-9}{\sqrt{x^2+5}+3}=\frac{x^2+12-16}{\sqrt{x^2+12}+4}\)
=>\(3\cdot\left(x-2\right)+\frac{x^2-4}{\sqrt{x^2+5}+3}=\frac{x^2-4}{\sqrt{x^2+12}+4}\)
=>\(\left(x-2\right)\left(3+\frac{x+2}{\sqrt{x^2+5}+3}-\frac{x+2}{\sqrt{x^2+12}+4}\right)=0\)
=>x-2=0
=>x=2